【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構成的四邊形恰為正方形,則橢圓的離心率為( )
A. B. C. D.
【答案】A
【解析】雙曲線的頂點與焦點分別是橢圓的焦點與頂點,雙曲線的頂點是,焦點是,設雙曲線方程為雙曲線的漸近線方程為, 雙曲線的兩條漸近線與橢圓的交點構成的四邊形恰為正方形,雙曲線的漸近線方程為,,,故選A.
【 方法點睛】本題主要考查雙曲線的漸近線、離心率以及雙曲線是簡單性質,橢圓的方程與性質,屬于難題. 離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:① 直接求出,從而求出; ② 構造的齊次式,求出;③ 采用離心率的定義以及圓錐曲線的定義來求解; ④ 根據(jù)圓錐曲線的統(tǒng)一定義求解.本題中,根據(jù)題橢圓與雙曲線的幾何性質建立關于焦半徑和焦距的等量關系.利用法②求出離心率.
科目:高中數(shù)學 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“活水圍網”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過尾/立方米時, 的值為千克/年;當時, 是的一次函數(shù),且當時, .
()當時,求關于的函數(shù)的表達式.
()當養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的解析式,并用“五點法作圖”在給出的直角坐標系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)設α∈(0,π),f( )= ,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二戰(zhàn)中盟軍為了知道德國“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報竊取,一種是用統(tǒng)計學的方法進行估計,統(tǒng)計學的方法最后被證實比傳統(tǒng)的情報收集更精確,德國人在生產坦克時把坦克從1開始進行了連續(xù)編號,在戰(zhàn)爭期間盟軍把繳獲的“虎式”坦克的編號進行記錄,并計算出這些編號的平均值為675.5,假設繳獲的坦克代表了所有坦克的一個隨機樣本,則利用你所學過的統(tǒng)計知識估計德國共制造“虎式”坦克大約有( )
A.1050輛
B.1350輛
C.1650輛
D.1950輛
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于f(x)=4sin (x∈R),有下列命題
①由f(x1)=f(x2)=0可得x1-x2是π的整數(shù)倍;
②y=f(x)的表達式可改寫成y=4cos;
③y=f(x)圖象關于對稱;
④y=f(x)圖象關于x=-對稱.
其中正確命題的序號為________(將你認為正確的都填上)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點”;若,則稱為的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,.
()設函數(shù),求集合和.
()求證:.
()設函數(shù),且,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com