【題目】在下列命題中,

①從分別標(biāo)有1,2,……,99張卡片中不放回地隨機(jī)抽取2次,每次抽取1張,則抽到的2張卡片上的數(shù)奇偶性不同的概率是

的展開式中的常數(shù)項為2;

③設(shè)隨機(jī)變量,若,則.

其中所有正確命題的序號是(

A.B.①③

C.②③D.①②③

【答案】C

【解析】

根據(jù)二項式定理,古典概型,以及正態(tài)分布的概率計算,對選項進(jìn)行逐一判斷,即可判斷.

對①:從9張卡片中不放回地隨機(jī)抽取2次,共有種可能;

滿足2張卡片上的數(shù)奇偶性不同,共有種可能;

根據(jù)古典概型的概率計算公式可得,其概率為,故①錯誤;

對②:對寫出通項公式可得,

,解得,即可得常數(shù)項為,故②正確;

對③:由正態(tài)分布的特點可知,故③正確.

綜上所述,正確的有②③.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中,、所成的比為,即,則有:.

1)拓展到空間,寫出空間四邊形類似的命題,并加以證明;

2)在長方體中,,,、分別為、的中點,利用上述(1)的結(jié)論求線段的長度;

3)在所有棱長均為平行六面體中,為銳角定值),、、所成的比為,求的長度.(用,表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班名同學(xué)期末考完試后,商量購買一些學(xué)習(xí)參考書準(zhǔn)備在高三時使用,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪購買,擲出點數(shù)大于或等于的人去圖書批發(fā)市場購買,擲出點數(shù)小于的人去網(wǎng)上購買,且參加者必須從圖書批發(fā)市場和網(wǎng)上選擇一家購買.

1)求這人中至多有人去圖書批發(fā)市場購買的概率;

2)用、分別表示這人中去圖書批發(fā)市場和網(wǎng)上購買的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的參數(shù)方程為(t為參數(shù)),以原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線關(guān)于對稱.

(1)求極坐標(biāo)方程,直角坐標(biāo)方程;

(2)將向左平移4個單位長度,按照變換得到與兩坐標(biāo)軸交于兩點,上任一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長時間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的健康,某校為了解AB兩班學(xué)生手機(jī)上網(wǎng)的時長,分別從這兩個班中隨機(jī)抽取6名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)時長作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).如果學(xué)生平均每周手機(jī)上網(wǎng)的時長大于21小時,則稱為“過度用網(wǎng)”

1)請根據(jù)樣本數(shù)據(jù),分別估計A,B兩班的學(xué)生平均每周上網(wǎng)時長的平均值;

2)從A班的樣本數(shù)據(jù)中有放回地抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)為“過度用網(wǎng)”的概率;

3)從A班、B班的樣本中各隨機(jī)抽取2名學(xué)生的數(shù)據(jù),記“過度用網(wǎng)”的學(xué)生人數(shù)為,寫出的分布列和數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;

(1)求所取2個小球都是紅球的概率;

(2)求所取的2個小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某合資企業(yè)招聘大學(xué)生時加試英語聽力,待測試的小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),若從中隨機(jī)選2人,其中恰為一男一女的概率為.

(Ⅰ)求該小組中女生的人數(shù);

(Ⅱ)若該小組中每個女生通過測試的概率均為,每個男生通過測試的概率均為.現(xiàn)對該小組中女生甲、女生乙和男生丙、丁4人進(jìn)行測試.記這4人中通過測試的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形均為平行四邊形,點在平面內(nèi)的射影恰好為點,以為直徑的圓經(jīng)過點,,的中點為的中點為,且

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值. 

查看答案和解析>>

同步練習(xí)冊答案