(2008•和平區(qū)三模)已知等差數(shù)列{an}的前n項和為Sn,若M、N、P三點共線,O為坐標原點,且
ON
=a31
OM
+a2
OP
(直線MP不過點O),則S32等于(  )
分析:由向量的知識可得a31+a2=1,故可得S32=
32(a1+a32)
2
=
32(a2+a31)
2
,代入計算可得.
解答:解:∵M、N、P三點共線,且
ON
=a31
OM
+a2
OP
,∴a31+a2=1,
故S32=
32(a1+a32)
2
=
32(a2+a31)
2
=16×1=16
故選D
點評:本題考查等差數(shù)列的性質,由平面向量的知識得出a31+a2=1是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)已知函數(shù)f(x)=(
1
3
)x-log2x
,若實數(shù)x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)如圖,在△ABC中,∠ABC=∠ACB=30°,AB,AC邊上的高分別為CD,BE,則以B,C為焦點且經(jīng)過D、E兩點的橢圓與雙曲線的離心率的和為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)在△ABC,設角A,B,C的對邊分別為a,b,c,且
cosC
cosB
=
2a-c
b
,則角B=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2,(n=1,2,3…)數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記Sn=a1b1+a2b2+…+anbn,求滿足Sn<167的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)若圓C:x2+y2-ax+2y+1=0和圓x2+y2=1關于直線y=x-1對稱,動圓P與圓C相外切且直線x=-1相切,則動圓圓心P的軌跡方程是( 。

查看答案和解析>>

同步練習冊答案