【題目】甲、乙兩人玩一種游戲,每次由甲、乙各出1到5根手指頭,若和為偶數(shù)算甲贏,否則算乙贏.

(1)若以A表示和為6的事件,求P(A).

(2)這種游戲規(guī)則公平嗎?說明理由.

【答案】(1);(2)游戲規(guī)則不公平.

【解析】試題分析:(1)由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件數(shù)為5×5,基本事件總數(shù)為25,事件A包含的基本事件數(shù)可以列舉出來共5個,根據(jù)概率公式得到結(jié)果.

(2)分別求出甲乙獲勝 的概率,甲贏得概率比乙贏得概率要大,所以不公平.

試題解析:

甲、乙各出1到5根手指頭共有25結(jié)果,每種結(jié)果發(fā)生的概率都是,

是古典概型。

(1)和為6的事件A,包含5個基本事件,

P(A)=

(2) 游戲規(guī)則不公平。

“和為偶數(shù)”發(fā)生的概率是,“和為奇數(shù)”發(fā)生的概率是

甲贏的概率是,乙贏的概率是

甲贏的概率大

因此,游戲規(guī)則不公平.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的一個極值點.

(1)求;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱柱,側(cè)棱底面, ,且 , ,側(cè)棱.

(1)若上一點,試確定點的位置,使平面;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)在點點處的切線方程;

(2)當時,求函數(shù)的極值點和極值;

(3)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知|a|4,|b|8,ab的夾角是120°.

(1) 計算:① |ab|,② |4a2b|;


(2) 當k為何值時,(a2b)⊥(kab)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學參加科普知識競賽,需回答3個問題,競賽規(guī)則規(guī)定:答對第一、二、三問題分別得100分、100分、200分,答錯得零分,假設(shè)這名同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響.

(1)求這名同學得300分的概率;

(2)求這名同學至少得300分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在遂寧市中央商務(wù)區(qū)的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、2只白色的乒乓球(其體積,質(zhì)地完全相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得統(tǒng)一顏色的3個球,攤主送個摸球者10元錢;若摸得非同一顏色的3個球。摸球者付給攤主2元錢。

(1)摸出的3個球中至少有1個白球的概率是多少?

(2)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x) (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和.

(1)k的值及f(x)的表達式;

(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

同步練習冊答案