如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
(1)    (2)

解 (1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以=(2,0,-4),=(1,-1,-4).因為cos〈,〉=,所以異面直線A1B與C1D所成角的余弦值為.
(2)設(shè)平面ADC1的法向量為n1=(x,y,z),因為=(1,1,0),=(0,2,4),所以n1·=0,n1·=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以,n1=(2,-2,1)是平面ADC1的一個法向量.取平面AA1B的一個法向量為n2=(0,1,0),設(shè)平面ADC1與平面ABA1所成二面角的大小為θ.
由|cos θ|=,得sin θ=.
因此,平面ADC1與平面ABA1所成二面角的正弦值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面,.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設(shè)點是平面內(nèi)的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,且滿足=== (如圖(1)),將△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,連接B、P(如圖(2)).

(1)求證: E⊥平面BEP;
(2)求直線E與平面BP所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐P-ABCD的底面ABCD是邊長為1的正方形,PD⊥底面ABCD,PD="AD."

(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)若E、F分別為PB,AD的中點,求證:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點A(1,2,1),B(-1,3,4),D(1,1,1),若=2,則||的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,則A1C的長為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知三棱錐中,,,上一點,,分別為的中點.    
(1)證明:.
(2)求面與面所成的銳二面角的余弦值.
(3)在線段(包括端點)上是否存在一點,使平面?若存在,確定的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案