【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?(愛國福、富強(qiáng)福、和諧福、友善福,敬業(yè)福),除夕夜,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某髙校一個社團(tuán)在年后開學(xué)后隨機(jī)調(diào)査了80位該校在讀大學(xué)生,就除夕夜之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:
(1)計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);
(2)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
【答案】(1)8125.(2).
【解析】試題分析:(1)根據(jù)表中數(shù)據(jù)可得這80位大學(xué)生集齊五福的頻率,由此可估算該校10000名在讀大學(xué)生中集齊五福的人數(shù)為
(2)由古典概型概率計算公式可求最后被選取的3次采訪對象中至少有一位男生的概率.
試題解析:(1)這80位大學(xué)生集齊五福的頻率為.
據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù)為.
(2)設(shè)選取的2位男生和3位女生分別記為,隨機(jī)選取3次采訪的所有結(jié)果為,共有10個基本事件.
至少有一位男生的基木事件有9個,
故所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和.求:
(I)求數(shù)列的通項公式;
(II)求數(shù)列的前n項和;
(III)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡”45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面 列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在 和 的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在 的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos2x﹣sin2x的圖象向左平移 個單位后得到函數(shù)F(x)的圖象,則下列說法正確的是( )
A.函數(shù)F(x)是奇函數(shù),最小值是
B.函數(shù)F(x)是偶函數(shù),最小值是
C.函數(shù)F(x)是奇函數(shù),最小值是﹣2
D.函數(shù)F(x)是偶函數(shù),最小值是﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+3x2-9x .
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-4,c]上的最小值為-5,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點,P,Q分別是AD和CD上的點,且滿足① = ,②直線AQ與BP的交點在橢圓E: + =1(a>b>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點,M為橢圓E第一象限部分上一點,作MN垂直于y軸,垂足為N,求梯形ORMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的半焦距為 ,原點 到經(jīng)過兩點 的直線的距離為 .
(Ⅰ)求橢圓 的離心率;
(Ⅱ)如圖, 是圓 的一條直徑,若橢圓 經(jīng)過 兩點,求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域為R的奇函數(shù)f(x)滿足f(1+x)=﹣f(x),則下列結(jié)論: ①f(x)的圖象關(guān)于點 對稱;
②f(x)的圖象關(guān)于直線 對稱;
③f(x)是周期函數(shù),且2個它的一個周期;
④f(x)在區(qū)間(﹣1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號是 . (填上你認(rèn)為所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體P﹣ABC中,點M是棱PC的中點,點N是線段AB上一動點,且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時,則cosα的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com