【題目】已知函數(shù)為奇函數(shù),且的極小值為.

(Ⅰ)求的值;

(Ⅱ)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ).(Ⅱ)

【解析】

(Ⅰ)根據(jù)題意可得,代入表達(dá)式可得,從而可得,求導(dǎo)函數(shù)令,求出極值點(diǎn),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而確定的極小值為,由即可求解.

(Ⅱ)由(Ⅰ)可知,設(shè)點(diǎn)是曲線的切點(diǎn),利用導(dǎo)數(shù)的幾何意義求出切線方程,將點(diǎn)代入切線方程得,設(shè),只要使函數(shù)3個(gè)零點(diǎn)即可,利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,解不等式組即可.

(Ⅰ)因?yàn)?/span>是奇函數(shù),所以恒成立,則.

所以,所以,

,解得.

當(dāng)時(shí),,當(dāng)時(shí),.

單調(diào)遞減,在單調(diào)遞增,所以的極小值為,

,解得,

所以,.

(Ⅱ)由(Ⅰ)可知,

設(shè)點(diǎn)是曲線的切點(diǎn),則在點(diǎn)處的切線的方程為

因?yàn)槠溥^點(diǎn),所以,,

由于有三條切線,所以方程應(yīng)有3個(gè)實(shí)根,

設(shè),只要使曲線3個(gè)零點(diǎn)即可.

設(shè),∴分別為的極值點(diǎn),

當(dāng)時(shí),上單調(diào)遞增,

當(dāng)時(shí),上單調(diào)遞減,

所以,為極大值點(diǎn),為極小值點(diǎn).

所以要使曲線軸有3個(gè)交點(diǎn),當(dāng)且僅當(dāng),即

解得.

即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點(diǎn)EF分別為BC,PD的中點(diǎn),直線PC與平面AEF交于點(diǎn)Q.

(1)若平面平面,求證:.

(2)求直線AQ與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形為矩形,二面角,,,,.

(1)求證:平面;

(2)為線段上的點(diǎn),當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的角A、B、C的對(duì)邊分別為a、b、c(2bc,a),(cosA,-cosC),且

(Ⅰ)求角A的大;

(Ⅱ)當(dāng)y2sin2Bsin(2B)取最大值時(shí),求角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)討論的單調(diào)性;

2)證明:當(dāng)時(shí),.

3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:

印刷冊(cè)數(shù)(千冊(cè))

單冊(cè)成本(元)

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:.

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到);

印刷冊(cè)數(shù)(千冊(cè))

單冊(cè)成本(元)

模型甲

估計(jì)值

殘差

模型乙

估計(jì)值

殘差

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個(gè)模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊(cè),若印刷廠以每冊(cè)元的價(jià)格將書籍出售給訂貨商,求印刷廠二次印刷千冊(cè)獲得的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本).

查看答案和解析>>

同步練習(xí)冊(cè)答案