【題目】設數(shù)列{an}的前n項和為Sn.已知2Sn3n3.

(1)求{an}的通項公式;

(2)若數(shù)列{bn}滿足anbnlog3an,求{bn}的前n項和Tn.

【答案】(1) (2) .

【解析】試題分析:

(1)由遞推關系可得a13,利用通項公式與前n項和的關系可知:當n>1時,2an2Sn2Sn13n3n12×3n1,則an3n1,綜上可得: ;

(2)結合(1)中求得的通項公式錯位相減可得{bn}的前n項和.

試題解析:

(1)因為2Sn3n3,

所以2a133,故a13,

n>1時,2Sn13n13

此時2an2Sn2Sn13n3n12×3n1,

an3n1,

顯然a1不滿足an3n1

所以an

(2)因為anbnlog3an,所以b1

n>1時,bn31nlog33n1(n1)·31n,

所以T1b1.

n>1時,Tnb1b2b3bn[1×312×323×33(n1)×31n],

所以3Tn1[1×302×313×32(n1)×32n]

兩式相減,得2Tn(3031323332n)(n1)×31n

(n1)×31n

,

所以Tn.

經(jīng)檢驗,n1時也適合.

綜上可得Tn.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,),且兩個焦點,的坐標依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標準方程;

(Ⅱ),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為(  )
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, 底面底面為正方形, 分別是的中點.

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 兩個空白框中,可以分別填入( 。

A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是  

A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球

C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓和雙曲線有共同焦點,是它們的一個交點,記橢圓和雙曲線的離心率分別,則的最小值是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=2x1 , 有以下結論:
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上單調(diào)遞減,在(2,3)上單調(diào)遞增;
③函數(shù)f(x)的最大值為1,最小值為0;
④當x∈(3,4)時,f(x)=23x
其中,正確結論的序號是 . (請寫出所有正確結論的序號)

查看答案和解析>>

同步練習冊答案