【題目】設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是(  )

①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).

A. ①② B. ②③

C. ①④ D. ②④

【答案】D

【解析】

隨機(jī)變量ξ服從正態(tài)分布N(0,1),根據(jù)概率和正態(tài)曲線的性質(zhì),即可得到答案

因?yàn)镻(|ξ|<a)=P(-a<ξ<a),所以①不正確;

因?yàn)镻(|ξ|<a)=P(-a<ξ<a)=P(ξ<a)-P(ξ<-a)=P(ξ<a)-P(ξ>a)

=P(ξ<a)-(1-P(ξ<a))=2P(ξ<a)-1,所以②正確,③不正確;

因?yàn)镻(|ξ|<a)+P(|ξ|≥a)=1,

所以P(|ξ|<a)=1-P(|ξ|≥a)(a>0),所以④正確.

故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且滿足a-2bsin A=0.

(1)求角B的大;

(2)若a+c=5,且a>c,b=,求·的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

命題b2-4ac<0,則方程ax2+bx+c=0(a≠0)沒有實(shí)根的否命題;

命題△ ABC,AB=BC=CA,△ ABC為等邊三角形的逆命題;

命題a>b>0,a>b>0”的逆否命題;

命題m>1,mx2-2(m+1)x+(m-3)<0的解集為R”的逆命題.

其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點(diǎn)P,使得由點(diǎn)P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通部門對某路段公路上行駛的汽車速度實(shí)施監(jiān)控,從速度在50﹣90km/h的汽車中抽取150輛進(jìn)行分析,得到數(shù)據(jù)的頻率分布直方圖如圖所示,則速度在70km/h以下的汽車有輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;②設(shè)有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;③線性回歸方程x+必過(,);④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;⑤在一個2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個變量之間有關(guān)系的可能性是90%.其中錯誤的個數(shù)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率X表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機(jī)器的同時購買的易損零件數(shù).

(1)X的分布列;

(2)若要求P(Xn)0.5確定n的最小值;

(3)以購買易損零件所需費(fèi)用的期望值為決策依據(jù)n19n20之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F為拋物線C:y2=4x的焦點(diǎn),點(diǎn)P是準(zhǔn)線l上的動點(diǎn),直線PF交拋物線于A,B兩點(diǎn),若點(diǎn)P的縱坐標(biāo)是m(m≠0),點(diǎn)D為準(zhǔn)線lx軸的交點(diǎn).

(1)m=2,△DAB的面積;

(2)設(shè),求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=2px(p>0)與直線y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是拋物線上兩個動點(diǎn),F為拋物線的焦點(diǎn),|AF|+|BF|=8.

(1)p的值.

(2)線段AB的垂直平分線lx軸的交點(diǎn)是否為定點(diǎn)?若是,求出交點(diǎn)坐標(biāo);若不是,說明理由.

(3)求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案