【題目】(2015·湖南)某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng),求下列問(wèn)題:(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 X ,求 X 的分布列和數(shù)學(xué)期望.
(1)(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率
(2)(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 , 求的分布列和數(shù)學(xué)期望.

【答案】
(1)


(2)

X

0

1

2

3

P

E(X)=.


【解析】(1):記事件={從甲箱中摸出的1個(gè)球是紅球},={從乙箱中摸出1一個(gè)球是紅球}={顧客抽獎(jiǎng)1次獲得一等獎(jiǎng)}={顧客抽獎(jiǎng)一次獲得二等獎(jiǎng)},={顧客抽獎(jiǎng)一次能獲獎(jiǎng)}則可知相互獨(dú)立,互斥,互斥且,+、因?yàn)?/span>所以,==故所求概率為=
(2)顧客抽獎(jiǎng)3次獨(dú)立重復(fù)實(shí)驗(yàn),由(1)知顧客抽獎(jiǎng)一次獲得一等獎(jiǎng)的概率為因?yàn)?/span>于是 , , , E(X)=.
的分布列為隨機(jī)變量的概率分布與期望以及概率統(tǒng)計(jì)在生活中的實(shí)際應(yīng)用,這一直都是高考命題的熱點(diǎn),試題的背景由傳統(tǒng)的摸球,骰子問(wèn)題向現(xiàn)實(shí)生活中的熱點(diǎn)問(wèn)題轉(zhuǎn)化,并且與統(tǒng)計(jì)的聯(lián)系越來(lái)越密切,與統(tǒng)計(jì)中的抽樣,頻率分布直方圖等基礎(chǔ)知識(shí)綜合的試題逐漸增多,在復(fù)習(xí)時(shí)應(yīng)予以關(guān)注.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015福建)“對(duì)任意x,ksinxcosx<x”是“k<1”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x3+ax+b=0,其中a,b均為實(shí)數(shù),下列條件中,使得該三次方程中僅有一個(gè)實(shí)根的是 ,(寫出所有正確條件的編號(hào))
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,c的極坐標(biāo)方程為=2sin
(1)寫出c的直角坐標(biāo)方程;
(2)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,且(n=1,2,...).記
集合
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個(gè)單位長(zhǎng)度,則評(píng)議后圖象的對(duì)稱軸為( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于D.

(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC= ,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)在其圖像上存在不同的兩點(diǎn)A(x1 , y1),B(x2 , y2),其坐標(biāo)滿足條件:|x1x2+y1y2|﹣ 的最大值為0,則稱f(x)為“柯西函數(shù)”, 則下列函數(shù):
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)=
其中為“柯西函數(shù)”的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行所給的程序框圖,則輸出的值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案