【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣統(tǒng)計(jì),先將800人按001,002,003,…,800進(jìn)行編號.
(Ⅰ)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的3個人的編號:(下面摘取了第7行至第9行)
(Ⅱ)抽的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績優(yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42人,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率為30%,求的值.
(Ⅲ)將, 的表示成有序數(shù)對,求“地理成績?yōu)榧案竦膶W(xué)生中,數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少”的數(shù)對的概率.
【答案】(Ⅰ)785,667,199.(Ⅱ), (Ⅲ)
【解析】試題分析:(I)按系統(tǒng)抽樣的方法可知,編號為.(II)根據(jù)頻率計(jì)算公式,可得,根據(jù)樣本總數(shù)列方程可求得.(III)根據(jù),通過列舉可得基本事件總數(shù)有種,其中符合題意的有種,故概率為.
試題解析:
(Ⅰ)依題意,最先檢測的3個人的編號依次為785,667,199.
(Ⅱ)由,得,
∵,∴.
(Ⅲ)由題意,知,且, .
故滿足條件的有:
共14組.
其中數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少有: 共6組.
∴數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值是函數(shù)的極小值的倍,并且,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對生產(chǎn)的一種新產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到以下數(shù)據(jù):
單價x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
銷量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(I)畫出散點(diǎn)圖,并求關(guān)于的回歸方程;
(II)已知該產(chǎn)品的成本是36元/件,預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,為使企業(yè)獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元(精確到元)?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全世界越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù),數(shù)據(jù)統(tǒng)計(jì)如下:
空氣質(zhì)量指數(shù) | |||||
空氣質(zhì)量等級 | 空氣優(yōu) | 空氣良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖:
(2)由頻率分布直方圖,求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別為和的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取天,從中任意選取天,求事件 “兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+2.
(1)求f(x)單調(diào)區(qū)間
(2)求f(x)在區(qū)間[ ,3]上的最大值和最小值;
(3)若g(x)=f(x)﹣mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直于圓所在的平面, 為的重心.
(1)求證:平面平面;
(2)若,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》.活動共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗.設(shè)男生闖過一至四關(guān)的概率依次是,女生闖過一至四關(guān)的概率依次是.
(Ⅰ)求男生甲闖關(guān)失敗的概率;
(Ⅱ)設(shè)表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)若,求函數(shù)的最小值;
(Ⅲ)求證:存在,當(dāng)時, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com