【題目】采購經(jīng)理指數(shù)(PMI)是衡量一個國家制造業(yè)的體檢表,是衡量制造業(yè)在生產(chǎn)新訂單、商品價格、存貨、雇員、訂單交貨、新出口訂單和進口等八個方面狀況的指數(shù),下圖為20189—20199月我國制造業(yè)的采購經(jīng)理指數(shù)(單位:%.

1)求2019年前9個月我國制造業(yè)的采購經(jīng)理指數(shù)的中位數(shù)及平均數(shù)(精確到0.1);

2)從20194—20199月這6個月任意選取2個月,求這兩個月至少有一個月采購經(jīng)理指數(shù)與上個月相比有所回升的概率.

【答案】1)中位數(shù)為,平均數(shù)為49.7;(2

【解析】

(1)利用中位數(shù)和平均數(shù)的概念直接求解即可.

(2)利用列舉法列出所有可能滿足條件的結(jié)果,即可求出所求概率.

12019年前9個月我國制造業(yè)的采購經(jīng)理指數(shù)的中位數(shù)為,

平均數(shù)為.

2)從20194—20199月這6個月任意選取2個月,結(jié)果總共有15種,

6個月中采購經(jīng)理指數(shù)與上個月相比有所回升的有79月,共2個,

所以從這6個月任意選取2個月,這兩個月至少有一個月采購經(jīng)理指數(shù)與上個月相比有所回升的結(jié)果有(4月,7月),(5月,7月),(6月,7月),(8月,7月),(4月,9月),(5月,9月),(6月,9月),(8月,9月),(7月,9月),結(jié)果有9種,

所以所求概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E)的焦點為,以原點O為圓心,橢圓E的短半軸長為半徑的圓與直線相切.

1)求橢圓E的方程;

2)過點F的直線l交橢圓EMN兩點,點P的坐標為,直線x軸交于A點,直線x軸交于B點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一條曲線Cy軸右側(cè),曲線C上任意一點到點的距離減去它到y軸的距離都等于1.

1)求曲線C的方程;

2)直線與軌跡C交于A,B兩點,問:在x軸上是否存在定點,使得直線關(guān)于x軸對稱而與直線的位置無關(guān),若存在,求出點M的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的右焦點為,左右頂點分別為、,,過點的直線(不與軸重合)交橢圓、點,直線軸的交點為,與直線的交點為.

1)求橢圓的方程;

2)若,求出點的坐標;

3)求證:、三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐的側(cè)棱長都相等,底面與側(cè)面都是以為斜邊的等腰直角三角形,為線段的中點,為直線上的動點,若平面與平面所成銳二面角的平面角為,則的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設分別關(guān)于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關(guān)于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個不同的零點.

(ⅰ)求實數(shù)的取值范圍;

(ⅱ)求證:.(其中的極小值點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】總體由編號為01,02...,394040個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如下表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

60 44 66 44 21

66 06 58 05 62

61 65 54 35 02

42 35 48 96 32

14 52 41 52 48

92 66 22 15 86

96 63 75 41 99

58 42 36 72 24

A.23B.21C.35D.32

查看答案和解析>>

同步練習冊答案