注意:請考生在(1)、(2)、(3)三題中任選一題做答,如果多做,則按所做的第一題計(jì)分
(1)如圖,AC為⊙O的直徑,弦BD⊥AC于點(diǎn)P,PC=2,PA=8,
則的值為 _____.
(2)在極坐標(biāo)系中,圓的圓心的極坐標(biāo)是 _____.
(3)不等式的解集為 _____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的極坐標(biāo)方程為,點(diǎn)為其左,右焦點(diǎn),直線的參數(shù)方程為(為參數(shù),).
(Ⅰ)求直線和曲線C的普通方程;
(Ⅱ)求點(diǎn)到直線的距離之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
在直角坐標(biāo)系xoy中,以o為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,M,N分別為C與x軸,y軸的交點(diǎn)
(1)寫出C的直角坐標(biāo)方程,并求出M,N的極坐標(biāo);
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,O為極點(diǎn),已知圓C的圓心為,半徑r=1,P在圓C上運(yùn)動(dòng)。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長度單位,且以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸)中,若Q為線段OP的中點(diǎn),求點(diǎn)Q軌跡的直角坐標(biāo)方程。
(I)求圓C的極坐標(biāo)方程;
(II)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長度單位,且以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸)
中,若Q為線段OP的中點(diǎn),求點(diǎn)Q軌跡的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的極坐標(biāo)方程為圓M的參數(shù)方程為
(其中為參數(shù))。
(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2) 求圓M上的點(diǎn)到直線的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題9分)在極坐標(biāo)系中,過曲線外的一點(diǎn) (其中為銳角)作平行于的直線與曲線分別交于.
(1)寫出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建系);
(2) 若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,銳角三角形ABC的高CD和高BE相交于O,則與△DOB相似的三角形個(gè)數(shù)是( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)圓內(nèi)兩條相交弦,其中一弦長為8 cm,且被交點(diǎn)平分,另一條弦被交點(diǎn)分成1∶4兩部分,則這條弦長是
A.2 cm | B.8 cm | C.10 cm | D.12 cm |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com