【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中超過的概率;

(2)我們把比分分差不超過15分的比賽稱為“膠著比賽”.為了考察易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯(lián)在這兩場比賽中至少有一場超過的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷之間是否具有線性相關關系?結合實際簡單說明理由.

【答案】(1);(2);(3)不具有線性相關關系.

【解析】試題分析:(1)由已知,結合古典概型計算公式可得:易建聯(lián)在該場比賽中超過的概率;(2)由已知,結合古典概型計算公式可得: 易建聯(lián)在該場比賽中超過的概率;(3)根據(jù)散點圖,并不是分布在某一條直線的周圍,可得結論.

試題解析:(1)設易建聯(lián)在比賽中超過為事件,則共有8場比賽中超過,故

(2)設“易建聯(lián)在這兩場比賽中至少有一場超過”為事件,則從上述9場比賽中隨機選擇兩場共有個基本事件,而從中任意選擇兩場中,兩場都不超過的有個基本事件,那么兩場至少有一場超過的基本事件為個基本事件.

(3)不具有線性相關關系.因為散點圖并不是分布在某一條直線的周圍.籃球是集體運動,個人無法完全主宰一場比賽.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在直角坐標系中,已知直線l1 , ),拋物線C t為參數(shù)).以原點為極點, 軸的非負半軸為極軸建立極坐標系.

(Ⅰ)求直線l1 和拋物線C的極坐標方程;

(Ⅱ)若直線l1 和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , , .

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為 .

1)求數(shù)列的通項公式;

2)令設數(shù)列的前項和為,

3)令,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點的直角坐標及曲線的直角坐標方程;

(2)若為曲線上的動點,求的中點到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函數(shù)的最值;
(2)若函數(shù)在定義域內(nèi)是單調(diào)函數(shù),求a取值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)f(x)與g(x)的圖象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,的中點,將沿折起,使得平面.

(Ⅰ)求證:平面平面 ;

(Ⅱ)若的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進行統(tǒng)計,將結果分成6組,分別是: ,制成如下所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內(nèi)).

1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動,商場設計了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

查看答案和解析>>

同步練習冊答案