【題目】已知非零常數(shù)α是函數(shù)y=x+tanx的一個零點,則(α2+1)(1+cos2α)的值為

【答案】2
【解析】解:由題意非零常數(shù)α是函數(shù)y=x+tanx的一個零點,可得,tanα=﹣α, 可得(α2+1)(1+cos2α)=(1+tan2α)(2cos2α)
=2(cos2α )×( +1)=2.
所以答案是:2.
【考點精析】掌握二倍角的余弦公式和函數(shù)的零點與方程根的關(guān)系是解答本題的根本,需要知道二倍角的余弦公式:;二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當m=﹣1時,求不等式f(x)≤2的解集;
(II)設(shè)關(guān)于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入的a的值為3,則輸出的i=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個結(jié)論: ①函數(shù) 的對稱中心是(﹣1,2);
②若關(guān)于x的方程 沒有實數(shù)根,則k的取值范圍是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的充分不必要條件;
④若 的圖象向右平移φ(φ>0)個單位后為奇函數(shù),則φ最小值是
其中正確的結(jié)論是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC內(nèi)一點,且 , ,若B,O,D三點共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓E:x2+(y﹣ 2= 經(jīng)過橢圓C: + =1(a>b>0)的左右焦點F1 , F2 , 且與橢圓C在第一象限的交點為A,且F1 , E,A三點共線,直線l交橢圓C于M,N兩點,且 (λ≠0)
(1)求橢圓C的方程;
(2)當三角形AMN的面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為銳角△ABC三個內(nèi)角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大。
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判斷函數(shù) f (x)的單調(diào)性;
(2)若函數(shù) f (x)有兩個極值點x1 , x2 , 求證:f(x1)+f(x2)<﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求直線AB與平面BEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案