【題目】某校高三共有800名學生,為了解學生3月月考生物測試情況,根據(jù)男女學生人數(shù)差異較大,從中隨機抽取了200名學生,記錄他們的分數(shù),并整理得如圖頻率分布直方圖.

(1)若成績不低于60分的為及格,成績不低于80分的為優(yōu)秀,試估計總體中合格的有多少人?優(yōu)秀的有多少人?

(2)已知樣本中有一半的女生分數(shù)不小于80,且樣本中不低于80分的男女生人數(shù)之比2:3,試估計總體中男生和女生人數(shù)的比例.

【答案】(1)及格的有640人,優(yōu)秀的有160人.(2)

【解析】試題分析:1根據(jù)頻率分布直方圖得到成績及格和成績優(yōu)秀的頻率,根據(jù)頻數(shù)=頻率×樣本容量”得的人數(shù);(2根據(jù)頻率分布直方圖得到樣本中不低于80分的女生人數(shù)為40人,所以樣本中分數(shù)不小于80的女生人數(shù)為,從而得到樣本中的女生人數(shù)為,男生人數(shù)為,然后根據(jù)分層抽樣的原理可得男生和女生人數(shù)的估計比例。

試題解析

(1)根據(jù)頻率分布直方圖可知,

總體中及格的人數(shù)估計為,

總體中優(yōu)秀的人數(shù)估計為,

所以估計總體中及格的有640人,優(yōu)秀的有160人. 

(2)由題意可知,樣本中分數(shù)不小于80的學生人數(shù)為,

所以樣本中分數(shù)不小于80的女生人數(shù)為,

所以樣本中的女生人數(shù)為,男生人數(shù)為,

男生和女生人數(shù)的比例為,

所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某港口船舶?康姆桨甘窍鹊较韧#

(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機選一個數(shù),若兩數(shù)之和為偶數(shù),則甲先停靠;若兩數(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請說明理由.

(2)根據(jù)以往經驗,甲船將于早上到達,乙船將于早上到達,請應用隨機模擬的方法求甲船先?康母怕,隨機數(shù)模擬實驗數(shù)據(jù)參考如下:記, 都是之間的均勻隨機數(shù),用計算機做了100次試驗,得到的結果有12次滿足,有6次滿足

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線 上,與直線 相切,且截直線 所得弦長為6

(Ⅰ)求圓的方程

(Ⅱ)過點是否存在直線,使以被圓截得弦為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對稱軸方程;

(II)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內角A,BC的對邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對稱軸方程;

(II)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內角A,BC的對邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,組成一個樣本的抽樣方法;在《九章算術》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關,關稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關,關稅共100錢,要按照各人帶錢多少的比例進行交稅,問三人各應付多少稅?則下列說法錯誤的是( )

A. 甲應付 B. 乙應付

C. 丙應付 D. 三者中甲付的錢最多,丙付的錢最少

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓相交于不同的兩點

1求線段的中點的軌跡的方程;

2是否存在實數(shù),使得直線與曲線只有一個交點?若存在求出的取值范圍;若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調研學生在, 兩家餐廳用餐的滿意度,從在 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);

(Ⅱ)從對餐廳評分在范圍內的人中隨機選出2人,求2人中恰有1人評分在范圍內的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

同步練習冊答案