【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是p萬元和q萬元.它們與投入資金x萬元的關(guān)系是:p= x,q= .今有3萬元資金投入經(jīng)營(yíng)這兩種商品,為獲得最大利潤(rùn),對(duì)這兩種商品的資金分別投入多少時(shí),能獲取最大利潤(rùn)?最大利潤(rùn)為多少?
【答案】解:設(shè)對(duì)乙商品投入資金x萬元,則對(duì)甲投入資金為(3﹣x)萬元,此時(shí)獲取利潤(rùn)為y萬元;
則由題意知, .
令 ,則y=﹣ t2+ t+ = (其中0≤t≤ );
根據(jù)二次函數(shù)的圖象與性質(zhì)知,當(dāng)t= 時(shí),y有最大值,為 ;
又t= ,得 = ,∴x= =2.25(萬元),∴3﹣x=0.75(萬元);
所以,對(duì)甲投入資金0.75萬元,對(duì)乙投資2.25萬元時(shí),獲取利潤(rùn)最大,為 萬元
【解析】如果設(shè)對(duì)乙商品投入資金x萬元,則對(duì)甲投入資金為(3﹣x)萬元,獲取的利潤(rùn)為y萬元;那么y=p+q,代入可得關(guān)于x的解析式,利用換元法得到二次函數(shù)f(t),再由二次函數(shù)的圖象與性質(zhì),求導(dǎo)y的最大值,和對(duì)應(yīng)的t、x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(n)=(1+ )n﹣n,其中n為正整數(shù).
(1)求f(1),f(2),f(3)的值;
(2)猜想滿足不等式f(n)<0的正整數(shù)n的范圍,并用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海岸線一側(cè)處有一個(gè)美麗的小島,某旅游公司為方便游客,在上設(shè)立了兩個(gè)報(bào)名點(diǎn),滿足中任意兩點(diǎn)間的距離為.公司擬按以下思路運(yùn)作:先將兩處游客分別乘車集中到之間的中轉(zhuǎn)點(diǎn)處(點(diǎn)異于兩點(diǎn)),然后乘同一艘輪游輪前往島.據(jù)統(tǒng)計(jì),每批游客處需發(fā)車2輛, 處需發(fā)車4輛,每輛汽車每千米耗費(fèi)元,游輪每千米耗費(fèi)元.(其中是正常數(shù))設(shè)∠,每批游客從各自報(bào)名點(diǎn)到島所需運(yùn)輸成本為元.
(1) 寫出關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
(2) 問:中轉(zhuǎn)點(diǎn)距離處多遠(yuǎn)時(shí), 最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值為1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,若方程g(x)=m在x∈[0, ]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),求證:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , .
(1)求f(x)的解析式及定義域;
(2)求f(x)的值域;
(3)若方程f(x)=a2﹣3a+3有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x2+bx+c且f(0)=f(2),則( )
A.f(﹣2)<f(0)<f( )
B.f( )<f(0)<f(﹣2)??
C.f( )<f(﹣2)<f(0)
D.f(0)<f( )<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,已知 ∥ , =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的關(guān)系式;
(2)若 ⊥ ,求x、y值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足 = ,
(1)若點(diǎn)P的坐標(biāo)為(2, ),求橢圓的方程;
(2)設(shè)過點(diǎn)P的一條直線交橢圓于B,C兩點(diǎn),且 =m ,直線OA,OB的斜率之積﹣ ,求實(shí)數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點(diǎn)T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com