精英家教網 > 高中數學 > 題目詳情
4、用邊長為48 cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為
8
cm.
分析:根據題意先設小正方形邊長為x,計算出鐵盒體積的函數解析式,再利用導數研究此函數的單調性,進而求得此函數的最大值即可.
解答:解:設小正方形邊長為x,鐵盒體積為y.
y=(48-2x)2•x=4x3-192x2+2304x.
y′=12x2-384x+2304=12(x-8)(x-24).
∵48-2x>0,
∴0<x<24.
∴x=8時,ymax=8192.
故答案為:8.
點評:本小題主要考查函數模型的選擇與應用,屬于基礎題.解決實際問題通常有四個步驟:(1)閱讀理解,認真審題;(2)引進數學符號,建立數學模型;(3)利用數學的方法,得到數學結果;(4)轉譯成具體問題作出解答,其中關鍵是建立數學模型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

用邊長為48 cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊成鐵盒,當所做的鐵盒容積最大時,在四角截去的正方形的邊長為(  )

A.6                       B.8                       C.10                            D.12

查看答案和解析>>

科目:高中數學 來源: 題型:

用邊長為48 cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊形折起,就能焊成鐵盒.所做的鐵盒容積最大時,在四角截去的正方形的邊長為( 。

A.6              B.8              C.10              D.12

查看答案和解析>>

科目:高中數學 來源: 題型:

用邊長為48 cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊形折起,就能焊成鐵盒.所做的鐵盒容積最大時,在四角截去的正方形的邊長為( 。

A.6              B.8               C.10              D.12

查看答案和解析>>

科目:高中數學 來源:2011年浙江省杭州市高二寒假作業(yè)數學卷選修1-1 題型:選擇題

用邊長為48 cm的正方形鐵皮做一個無蓋的鐵盒時,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊接成鐵盒,所做的鐵盒容積最大時,在四角截去的正方形的邊長為           (      )

A.12 cm.      B.16cm.       C.4 cm.      D.8 cm.

 

查看答案和解析>>

同步練習冊答案