【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明是上的偶函數(shù)
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)由 ,根據(jù)函數(shù)奇偶性的定義即可得是上的偶函數(shù);(2)利用參數(shù)分離法,將不等式,在上恒成立,進(jìn)行轉(zhuǎn)化為對任意恒成立 ,利用函數(shù)的單調(diào)性求最值即可求從實數(shù)的取值范圍.
試題解析:(1)因為對任意,都有 ,
所以是R上的偶函數(shù).
(2)由條件知在上恒成立,
令,則對任意 ,
所以對任意成立 ,
由對勾函數(shù)的單調(diào)性知 ,
所以 ,
因此,實數(shù)的取值范圍是.
【方法點晴】本題主要考查函數(shù)的奇偶性、單調(diào)性以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值或恒成立;④ 討論參數(shù).本題是利用方法 ① 求得實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)(為自然對數(shù)的底數(shù))的零點個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,是的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列集合間的關(guān)系:
(1)A={x|x-3>2},B={x|2x-5≥0};
(2)A={x∈Z|-1≤x<3},B={x|x=|y|,y∈A}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價為30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價x元與日銷售量y件之間有如下所表示的關(guān)系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)在所給的坐標(biāo)系中,如圖,根據(jù)表格提供的數(shù)據(jù)描出實數(shù)對(x,y)的對應(yīng)點,并確定y與x的一個函數(shù)關(guān)系式y=f(x);
(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價x為多少時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點處的切線為直線.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0. 若B的坐標(biāo)為(1,2),求△ABC三邊所在直線方程及點C坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x(噸)的二次函數(shù);當(dāng)月產(chǎn)量為10噸時,月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時,月總成本最低為17.5萬元,為二次函數(shù)的頂點.寫出月總成本y(萬元)關(guān)于月產(chǎn)量x(噸)的函數(shù)關(guān)系.已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com