【題目】已知函數(shù),且當時,的最小值為2,

1)求的值,并求的單調遞增區(qū)間.

2)若將函數(shù)的圖象上的點的縱坐標不變,橫坐標縮小到原來的,再將所得的圖象向右平移個單位長度,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.

【答案】1;單調遞增區(qū)間為)(2

【解析】

1)由條件利用正弦函數(shù)的定義域和值域,求得的值.

2)由題意利用正弦函數(shù)的圖象可得,由此求得它在區(qū)間上所有根,從而得出結論

1)函數(shù),

所以,

,得

,

由題意得,,,

,

所以函數(shù)的單調遞增區(qū)間為.

2)由(1)得

將函數(shù)的圖象上的點的縱坐標不變,橫坐標縮小到原來的,得到,再將的圖象向右平移個單位長度得

又由,

解得,

),

因為,所以,

故所有根之和為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,討論函數(shù)的單調性;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標方程化為直角坐標方程;

(Ⅱ)若直線與曲線相交于,兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結果回答下列問題:

(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線焦點的直線與拋物線交于,兩點,與圓交于,兩點,若有三條直線滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體中,四邊形是矩形,,,,的中點,為線段上一點,且.

(Ⅰ)求證:平面

(Ⅱ)求證:;

(Ⅲ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且當x≥0時,fx)=x22x

1)求f0)及ff1))的值;

2)求函數(shù)fx)的解析式;

3)若關于x的方程fx)﹣m0有四個不同的實數(shù)解,求實數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面,,的中點,的中點,點在線段上,,.

(Ⅰ)求證:平面

(Ⅱ)若,求證:平面;

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關決定從某學校高一年級的650名學生中隨機抽取男生、女生各25人進行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關,并說明理由.

附:,其中na+b+c+d

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案