【題目】在圓x2+y2=5x內,過點 有n條弦的長度成等差數(shù)列,最短弦長為數(shù)列的首項a1 , 最長弦長為an , 若公差 ,那么n的取值集合

【答案】n=4,5,6
【解析】解:∵圓的方程為x2+y2=5x,化成圓的標準方程為: ,
由此可以知道圓心: 圓的半徑為
利用圓的性質可以知道最短弦應為過已知定點與圓心連線垂直的弦最短由此得a1= ,
最長弦為過定點的圓的直徑 ,∴ ,
,∴ ,
∴3≤n﹣1<6,∴4≤n<7,n∈N+ ,
∴n=4,5,6;
故答案為:n=4,5,6.
由題意過點 有n條弦的長度成等差數(shù)列,最短弦長為數(shù)列的首項a1 , 最長弦長為an , 利用圓中的弦長公式求出a1 , an又由于,成等差數(shù)列,得到公差d,利用公差的范圍及n為正整數(shù)逼出n的取值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解學校食堂的服務情況,隨機調查了50名就餐的教師和學生.根據(jù)這50名師生對餐廳服務質量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學校規(guī)定:師生對食堂服務質量的評分不得低于75分,否則將進行內部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務質量評分的平均分,并據(jù)此回答食堂是否需要進行內部整頓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數(shù)的算術平均數(shù);
③求鍵盤所輸入的兩個數(shù)的最小數(shù);
④求函數(shù)當自變量取x0時的函數(shù)值.
其中不需要用條件語句來描述算法的問題有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)若對任意的 ,均有 ,求 的取值范圍;
(2)若對任意的 ,均有 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正實數(shù)a,b滿足a+b=1,則(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1 , O是底面ABCD對角線的交點.

求證:(I) C1O∥面AB1D1;
(II)面A1C⊥面AB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為R上的偶函數(shù),g(x)為R上的奇函數(shù),且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數(shù)h(x)=f(x)﹣ 在R上只有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關于點( ,0)對稱
B.關于點(﹣ ,0)對稱
C.關于直線x=﹣ 對稱
D.關于直線x= 對稱

查看答案和解析>>

同步練習冊答案