【題目】已知拋物線(xiàn)上一點(diǎn)到其焦點(diǎn)的距離為5.

1)求的值;

2)設(shè)動(dòng)直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),問(wèn):在軸上是否存在與的取值無(wú)關(guān)的定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

【答案】1,; 2)存在點(diǎn).

【解析】

1)由拋物線(xiàn)上點(diǎn)的焦半徑為可求得,從而再求得;

2)假設(shè)設(shè)存在點(diǎn)滿(mǎn)足條件,令,,條件轉(zhuǎn)化為,即,整理得:,由直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立后消去(注意討論的情形),得的方程,由韋達(dá)定理得,代入它是與無(wú)關(guān)的等式,從而可得

1)根據(jù)拋物線(xiàn)定義,點(diǎn)到焦點(diǎn)的距離等于它到準(zhǔn)線(xiàn)的距離,即

,解得,∴拋物線(xiàn)方程為,

點(diǎn)在拋物線(xiàn)上,得,∴.

2)拋物線(xiàn)方程為:,

當(dāng),直線(xiàn)只與拋物線(xiàn)有一個(gè)交點(diǎn),顯然不成立,

當(dāng)時(shí),令,,設(shè)存在點(diǎn)滿(mǎn)足條件,

即:,

,

整理得:,

,整理得

,

,

,解的,

因此存在點(diǎn)滿(mǎn)足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,分別為的左、右頂點(diǎn),直線(xiàn)的斜率之積為,為橢圓的右焦點(diǎn),直線(xiàn).

1)求橢圓的方程;

2)直線(xiàn)過(guò)點(diǎn)且與橢圓交于、兩點(diǎn),直線(xiàn)、分別與直線(xiàn)交于、兩點(diǎn).試問(wèn):以為直徑的圓是否過(guò)定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo),否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)函數(shù)有最小值,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形中,ABCD,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.

(Ⅰ)求證:BC⊥平面DBE

(Ⅱ)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點(diǎn),求a的取值范圍;

設(shè)函數(shù),,當(dāng)時(shí),若對(duì)任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在,實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.

(Ⅰ)求圖中的值;

(Ⅱ)用樣本估計(jì)總體,以頻率作為概率,若在,兩塊試驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

(Ⅲ)填寫(xiě)下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.15

0.10

0.05

0.025

0.010

0.005

<>0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)yf(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞增;

②函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;

④當(dāng)x2時(shí),函數(shù)yf(x)有極小值;

⑤當(dāng)x時(shí),函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù)使得則稱(chēng)是區(qū)間一內(nèi)點(diǎn).

(1)求證:的充要條件是存在使得是區(qū)間一內(nèi)點(diǎn);

(2)若實(shí)數(shù)滿(mǎn)足:求證:存在,使得是區(qū)間一內(nèi)點(diǎn);

(3)給定實(shí)數(shù),若對(duì)于任意區(qū)間是區(qū)間的一內(nèi)點(diǎn),是區(qū)間的一內(nèi)點(diǎn),且不等式和不等式對(duì)于任意都恒成立,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案