【題目】已知函數(shù)f(x)=x3﹣2x2﹣4x.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣1,4]上的最大值和最小值.
【答案】
(1)解:∵函數(shù)f(x)=x3﹣2x2﹣4x,
∴f′(x)=3x2﹣4x﹣4,
由f′(x)>0,得x<﹣ 或x>2,
由f′(x)<0,得﹣ <x<2,
∴函數(shù)y=f(x)的單調(diào)增區(qū)間是(﹣∞,﹣ ),[2,+∞);單調(diào)減區(qū)間是[﹣ ,2].
(2)解:由f′(x)=3x2﹣4x﹣4=0,
得 ,x2=2,
列表,得:
x | ﹣1 | (﹣1,﹣ ) | ﹣ | (﹣ ,2) | 2 | (2,4) | 4 |
f′(x) | + | 0 | ﹣ | 0 | + | ||
f(x) | 1 | ↑ | ↓ | ﹣8 | ↑ | 16 |
∴f(x)在[﹣1,4]上的最大值為f(x)max=f(4)=16,最小值為f(x)min=f(2)=﹣8.
【解析】(1)求出f′(x)=3x2﹣4x﹣4,利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)y=f(x)的單調(diào)增區(qū)間和單調(diào)減區(qū)間.(2)由f′(x)=3x2﹣4x﹣4=0,得 ,x2=2,列表討論能求出f(x)在[﹣1,4]上的最大值和最小值.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其它四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為 的等腰三角形.
(Ⅰ)求二面角P﹣AB﹣C的大小;
(Ⅱ)在線段AB上是否存在一點(diǎn)E,使平面PCE⊥平面PCD?若存在,請(qǐng)指出點(diǎn)E的位置并證明,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E為DD1的中點(diǎn),則下列直線中與平面ACE平行的是( )
A.BA1
B.BD1
C.BC1
D.BB1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,離心率為,軸上一點(diǎn)的坐標(biāo)為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若對(duì)于直線,橢圓上總存在不同的兩點(diǎn)與關(guān)于直線對(duì)稱,且,求
實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣x﹣ )eax(a>0).
(1)求函數(shù)y=f(x)的最小值;
(2)若存在唯一實(shí)數(shù)x0 , 使得f(x0)+ =0成立,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1 , y1),B(x2 , y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0 , y0),使得:①x0= ;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當(dāng)a=2時(shí),函數(shù)f(x)是否存在“中值和諧切線”,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com