【題目】如圖,在平行四邊形ABCD中,AB=a,BC=1,∠BAD=60°,E為線段CD(端點(diǎn)C、D除外)上一動(dòng)點(diǎn),將△ADE沿直線AE翻折,在翻折過程中,若存在某個(gè)位置使得直線AD與BC垂直,則a的取值范圍是( )

A.( ,+∞)
B.( ,+∞)
C.( +1,+∞)
D.( +1,+∞)

【答案】D
【解析】解:設(shè)翻折前的D記為D′,∵AD⊥BC,BC∥AD′,則在翻折過程中,存在某個(gè)位置使得直線AD與BC垂直,只需保證∠DAD′=900 , ∵∠D′AE=∠DAE,由極限位置知,只需保證∠D′AE≥45°即可.
在△D′AE中,AD′=1,∠D′AE=45°,∠AD′E=120°,則∠D′EA=15°,
由正弦定理知, ,則D′E=
因?yàn)镋為線段CD(端點(diǎn)C,D除外)上的一動(dòng)點(diǎn),
則a>
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐A﹣BCD中,側(cè)棱AB,AC,AD兩兩垂直,△ABC、△ACD、△ABD的面積分別為 、2 ,則三棱錐A﹣BCD的外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時(shí),f(x)= ,a=f( ),b=f( ),c=f( ),則(
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為正實(shí)數(shù)

(1)若函數(shù)處的切線斜率為2,的值;

(2)求函數(shù)的單調(diào)區(qū)間

(3)若函數(shù)有兩個(gè)極值點(diǎn),求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】輸入x,求函數(shù)y=的值的程序框圖如圖C17所示.

(1)指出程序框圖中的錯(cuò)誤之處并寫出正確的算法步驟.

(2)重新繪制程序框圖,并回答下面提出的問題.

①要使輸出的值為7,則輸入的x的值應(yīng)為多少?

②要使輸出的值為正數(shù),則輸入的x應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為, 的中點(diǎn), 為線段上的動(dòng)點(diǎn),過點(diǎn), , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號(hào)).

①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;

③當(dāng)時(shí), 的交點(diǎn)滿足;

④當(dāng)時(shí), 為五邊形;

⑤當(dāng)時(shí), 的面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)動(dòng)點(diǎn)到兩定點(diǎn) 的距離的比值為的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)若直線過點(diǎn),且點(diǎn)到直線的距離為,求直線的方程,并判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約于下午1:00~2:00之間到某車站乘公共汽車外出,他們到達(dá)車站的時(shí)間是隨機(jī)的.設(shè)在下午1:00~2:00之間該車站有四班公共汽車開出,開車時(shí)間分別是1:15,1:30,1:45,2:00.求他們?cè)谙率銮闆r下乘同一班車的概率:

(1)約定見車就乘;

(2)約定最多等一班車.

查看答案和解析>>

同步練習(xí)冊(cè)答案