【題目】已知函數(shù)

(1)求函數(shù)解析式;

(2)判斷函數(shù)的奇偶性(給出結(jié)論即可);

(3)若方程

【答案】(1)(2)偶函數(shù)(3)b<-1

【解析】

(1)將函數(shù)f(x)解析式進行化簡,然后利用二次函數(shù)的圖像的性質(zhì),討論對稱軸和區(qū)間的位置關(guān)系可得函數(shù)的最大值;(2)由函數(shù)圖像可得函數(shù)的奇偶性;(3)根據(jù)題意可轉(zhuǎn)為y=by=g(a)有兩個不同的交點,結(jié)合圖像可得b得取值范圍.

(1)=(sinxa)2-1

1sinx1,∴當(dāng)1<a<1,函數(shù)的最大值為-1,

當(dāng)a1時,則當(dāng)sinx=1時,函數(shù)有最大值為,

當(dāng)a1時,當(dāng)sinx=1時,函數(shù)有最大值,所以函數(shù)f(x)的最大值

2)函數(shù)g(x)為偶函數(shù);

3)若畫出函數(shù)g(a)的圖像,由圖像可得b<-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 an≤an+1≤3an , n∈N* , a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范圍;
(2)設(shè){an}是公比為q的等比數(shù)列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范圍.
(3)若a1 , a2 , …ak成等差數(shù)列,且a1+a2+…ak=1000,求正整數(shù)k的最大值,以及k取最大值時相應(yīng)數(shù)列a1 , a2 , …ak的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[1,+∞)上的函數(shù)f(x)= 給出下列結(jié)論: ①函數(shù)f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23n;
③存在k∈( , ),使得直線y=kx與函數(shù)y=f(x)的圖象有5個公共點;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是(
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護費相應(yīng)增加現(xiàn)對一批該設(shè)備進行調(diào)查,得到這批設(shè)備自購入使用之日起,前五年平均每臺設(shè)備每年的維護費用大致如表:

年份

1

2

3

4

5

維護費萬元

y關(guān)于t的線性回歸方程;

若該設(shè)備的價格是每臺5萬元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰更有道理?并說明理由.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1 , E,F(xiàn)分別是上底面A1B1C1D1和側(cè)面CDD1C1的中心,若 =x +y +z ,則x+y+z=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2是橢圓C: + =1的左、右焦點.
(1)若點M在橢圓C上,且∠F1MF2=60°,求△F1MF2的面積;
(2)動直線y=k(x+1)與橢圓C相交于A,B兩點,點T(t,0),問是否存在t∈R,使得 為定值,若存在求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=lg(﹣x2+4x﹣3)的定義域為A,函數(shù)y= ,x∈(0,m)的值域為B.
(1)當(dāng)m=2時,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸出的值為,在條件框內(nèi)應(yīng)填寫( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0;求證:x1+2x0=0.

查看答案和解析>>

同步練習(xí)冊答案