【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比前多

D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比后多

【答案】D

【解析】

結(jié)合兩圖對每一個選項逐一分析得解.

對于選項A, 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占56%,占一半以上,所以該選項正確;

對于選項B, 互聯(lián)網(wǎng)行業(yè)中90后從事技術(shù)崗位的人數(shù)占總?cè)藬?shù)的,超過總?cè)藬?shù)的,所以該選項正確;

對于選項C, 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后占總?cè)藬?shù)的,比前多,所以該選項正確.

對于選項D, 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后占總?cè)藬?shù)的,80后占總?cè)藬?shù)的41%,所以互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后不一定比后多.所以該選項不一定正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,點為橢圓的右頂點,直線與橢圓相交于不同于點的兩個點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)時,求面積的最大值;

(Ⅲ)若直線的斜率為2,求證:的外接圓恒過一個異于點的定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點,動點兩點連線的斜率滿足.

(1)求動點的軌跡的方程;

(2)是曲線軸正半軸的交點,曲線上是否存在兩點,使得是以為直角頂點的等腰直角三角形?若存在,請說明有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等腰直角三角形,,將沿底邊上的高線折起到位置,使,如圖所示,分別取的中點.

(1)求二面角的余弦值;

(2)判斷在線段上是否存在一點,使平面?若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了教職工的住房問題,計劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層的建筑費用相同都為400,以后每增高一層,其建筑費用就增加50.試設(shè)計這幢宿舍樓的樓高層數(shù),使總費用最少,并求出其最少費用.(總費用為建筑費用和征地費用之和).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對于區(qū)間上的任意,都有,則實數(shù)的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準(zhǔn)線交于M、N兩點,MNF的面積為p,其中FE的焦點.

1)求拋物線E的方程;

2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OAOB,設(shè)點Q為圓C上任意一動點,求當(dāng)動點Q到直線l的距離最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在新年舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費用為萬元時,銷售量萬件滿足(其中為正常數(shù)).現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.

1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

1)選5人排成一排;

2)排成前后兩排,前排4人,后排3人;

3)全體排成一排,甲不站排頭也不站排尾;

4)全體排成一排,女生必須站在一起;

5)全體排成一排,男生互不相鄰.

查看答案和解析>>

同步練習(xí)冊答案