【題目】選修4-5:不等式選講

已知函數(shù).

(1)求的值域;

(2)若存在唯一的整數(shù),使得,求的取值范圍.

【答案】(1)(-,2] ;(2)[1,2).

【解析】

1)利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,畫出函數(shù)圖像,根據(jù)圖像求出函數(shù)的最大值,進(jìn)而求得函數(shù)的值域.2)根據(jù)(1)可知,且是不等式的的唯一解,由此列不等式組,解不等式組求得的取值范圍.

解:(1)由f(x),

可以畫出f(x)圖象

因此函數(shù)f(x)值域?yàn)?/span>(2]

2)由(1)知,若關(guān)于x的不等式f(x)a解集非空,

a2,且x=-1是此不等式的解.

因?yàn)槿舸嬖谖ㄒ坏恼麛?shù)x0,使得f(x0)a

由(1)知,解得a≥1

因此a的取值范圍為[12)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐底面為平行四邊形

∠ADC=45°,,的中點(diǎn),⊥平面,,的中點(diǎn).

(1)證明:⊥平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知是橢圓的右焦點(diǎn),直線與橢圓相切于點(diǎn)

1)若,求;

2)若,,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知pr的充分條件而不是必要條件,qr的充分條件,sr的必要條件,qs的必要條件,F(xiàn)有下列命題:①sq的充要條件;②pq的充分條件而不是必要條件;③rq的必要條件而不是充分條件;④的必要條件而不是充分條件;⑤rs的充分條件而不是必要條件.則正確命題序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖:

(1)學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯(cuò)誤率的概率不超過0.025的前提下認(rèn)為成績(jī)優(yōu)異與教學(xué)方式有關(guān)?”

下面臨界值表僅供參考:

(參考方式:,其中

(2)現(xiàn)從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,分別為、的中點(diǎn).

(1)證明:平面;

(2)若平面,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為其左、右焦點(diǎn),為橢圓上一點(diǎn),且的周長(zhǎng)為.

(1)求橢圓的方程;

(2)過點(diǎn)作關(guān)于軸對(duì)稱的兩條不同的直線,若直線交橢圓于一點(diǎn),直線交橢圓于一點(diǎn),證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),記的最小值為,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案