(本題滿分14分) 已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355428456.png)
的首項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355756404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355772299.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355787745.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355803538.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355850441.png)
,求證
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355865665.png)
是等比數(shù)列并求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355428456.png)
的通項(xiàng)公式;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355896482.png)
對一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355896471.png)
都成立,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355912257.png)
的取值范圍。
(1) 由題意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355928489.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355959790.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355974709.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232033559901012.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356006607.png)
……………………………… 4分
所以數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203355865665.png)
是首項(xiàng)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356037383.png)
,公比為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356037325.png)
的等比數(shù)列;……………5分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232033560521295.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356068687.png)
……………………8分
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232033559901012.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232033560991145.png)
……………10分
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356115942.png)
知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356115464.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356146494.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356162582.png)
……………11分
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356177966.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356177499.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356193365.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203356208420.png)
…………14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203757806465.png)
滿足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203757837485.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758009992.png)
(其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758056253.png)
為自然對數(shù)的底數(shù)).
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203757806465.png)
的通項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758227372.png)
;
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758415730.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758430735.png)
,求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758446642.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203758477532.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509825481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509841297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509872388.png)
,對任意的正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509841297.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510106594.png)
成立,記
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232035101211039.png)
?
(I)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510199491.png)
的通項(xiàng)公式;
(II)記
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510215938.png)
,設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510231450.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509841297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510277373.png)
,求證:對任意正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509841297.png)
都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510324574.png)
;
(III)設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510199491.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203509841297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510433366.png)
?已知正實(shí)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510449323.png)
滿足:對任意正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510480646.png)
恒成立,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203510449323.png)
的最小值?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834068480.png)
,定義其平均數(shù)是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834084873.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834099527.png)
.
(Ⅰ)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834068480.png)
的平均數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834146607.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834162348.png)
;
(Ⅱ)若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834068480.png)
是首項(xiàng)為1,公比為2的等比數(shù)列,其平均數(shù)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834193387.png)
,
求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202834208873.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341021457.png)
是等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341037656.png)
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341053476.png)
是等差數(shù)列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341068451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341084945.png)
(Ⅰ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341053476.png)
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341053476.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341131297.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341162388.png)
;
(Ⅲ)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341177878.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341209935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341224610.png)
比較
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341240358.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202341255395.png)
大小,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分)已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756729357.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756744488.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756760350.png)
.
(Ⅰ) 求數(shù)列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756916427.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756932302.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756947319.png)
;
(Ⅱ)若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756963626.png)
,使不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756978464.png)
成立,求實(shí)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201757010296.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913090481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913106297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913184388.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913199347.png)
是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913184388.png)
與2的等差中項(xiàng),數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913293479.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913308432.png)
,點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913324973.png)
在直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913340505.png)
上,
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913433471.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913293479.png)
的通項(xiàng)公式;
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913464928.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913480442.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913106297.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195913636375.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
數(shù)列{
an}的通項(xiàng)公式
an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220313211564.png)
,若前
n項(xiàng)的和為10,則項(xiàng)數(shù)
n為_____.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232047222781127.png)
前10項(xiàng)的和為____________
查看答案和解析>>