【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過點(diǎn)Pm0),且傾斜角為O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于AB兩點(diǎn),且|PA·PB|=1,求實(shí)數(shù)m的值.

【答案】(Ⅰ)t為參數(shù));(Ⅱ).

【解析】

試題分析: 本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力. 第一問,用,化簡表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點(diǎn)和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.

試題解析:(1 ,

.

2

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4及圓內(nèi)一點(diǎn)P(2,5).
(1)求過P點(diǎn)的弦中,弦長最短的弦所在的直線方程;
(2)求過點(diǎn)M(5,0)與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)的定義域?yàn)?/span>D,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)是函數(shù)的圖象上的“穩(wěn)定點(diǎn)”.

(1)若函數(shù)的圖象上有且只有兩個(gè)相異的“穩(wěn)定點(diǎn)”,試求實(shí)數(shù)a的取值范圍;

(2)已知定義在實(shí)數(shù)集R上的奇函數(shù)存在有限個(gè)“穩(wěn)定點(diǎn)”,求證:必有奇數(shù)個(gè)“穩(wěn)定點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查,得到數(shù)據(jù)如表所示(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):

常喝

不常喝

合計(jì)

肥胖

2

8

不肥胖

18

合計(jì)

30

(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;

(Ⅱ)是否有99%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.

0.050 0.010

3.841 6.635

參考數(shù)據(jù):

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長為 cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱A1B1C1D1﹣ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件 時(shí),有A1C⊥B1D1 . (注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·上海)如圖,圓錐的頂點(diǎn)為P,底面的一條直徑為AB,C為半圓弧AB的中點(diǎn),E為劣弧CB的中點(diǎn). 已知PO=2,OA=1,求三棱錐P-AOC的體積,并求異面直線PA與OE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個(gè)零點(diǎn)x1 , x2 , 則x1x2的取值范圍是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0),過其左焦點(diǎn)F作x軸的垂線,交雙曲線于A,B兩點(diǎn),若雙曲線的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案