【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+
(1)求函數(shù)f(x)的對稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈ 上有三個實數(shù)解,求實數(shù)m的取值范圍.

【答案】
(1)

解:f(x)=2cosxsin(x﹣ )+ = sinxcosx﹣ =sin(2x﹣ ),

∴函數(shù)f(x)的對稱軸方程x= ,k∈Z;.


(2)

解:方程sin2x+2|f(x+ )|﹣m+1=0可化為方程sin2x+2|sin2x|=m﹣1.

令g(x)=

若方程有三個實數(shù)解,則m﹣1=1或0<m﹣1<

∴m=2或1<m<1+


【解析】(1)利用差角的正弦公式、二倍角公式、輔助角公式,化簡函數(shù),即可求函數(shù)f(x)的對稱軸方程;(2)方程sin2x+2|f(x+ )|﹣m+1=0可化為方程sin2x+2|sin2x|=m﹣1.令g(x)= ,根據(jù)方程有三個實數(shù)解,則m﹣1=1或0<m﹣1< ,即可求實數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,解不等式;

(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,設(shè)命題p:橢圓C: + =1的焦點在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點. 若命題p、命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個非零向量 不共線.
(1)若 = + , =2 +8 =3( ).求證:A,B,D三點共線;
(2)試確定實數(shù)k,使k + +k 共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f ,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實數(shù)m的范圍;
(2)在方程表示圓時,該圓與直線l:x+2y﹣4=0相交于M、N兩點,且|MN|= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關(guān)于原點O對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(11)的值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABCD為空間四邊形,AB=CD,AD=BC,AB≠AD,M,N分別是對角線AC與BD的中點,則MN與(
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直

查看答案和解析>>

同步練習(xí)冊答案