【題目】某加油站擬建造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長度單位為米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.

(1) 寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;

(2) 若預(yù)算為萬元,求所能建造的儲(chǔ)油罐中的最大值(精確到),并求此時(shí)儲(chǔ)油罐的體積(單位: 立方米,精確到立方米).

【答案】(1) ,;(2) (),立方米.

【解析】

(1)先利用公式計(jì)算兩個(gè)半球的表面積(不含底)以及圓柱的側(cè)面積,再根據(jù)每平方米建造費(fèi)用可得關(guān)于的函數(shù)表達(dá)式,注意的范圍.

(2)根據(jù)預(yù)算可得關(guān)于的不等式,求出其解后可得的最大值,利用公式可求該幾何體的體積.

(1) 半球的表面積(不含底),圓柱的側(cè)面積.

于是.

定義域?yàn)?/span>.

(2) ,即,解得.

,

經(jīng)計(jì)算得(立方米).

的最大值為(),此時(shí)儲(chǔ)油罐的體積約為立方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{2n1}的前n項(xiàng)13,7,,2n1組成集合nN*),從集合An中任取kk=1,23,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為Tk(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當(dāng)n=1時(shí),A1={1}T1=1,S1=1;當(dāng)n=2時(shí),A2={1,3},T1=1+3T2=1×3,S2=1+3+1×3=7,試寫出Sn=__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為AB,且,為等邊三角形.

1)求橢圓C的方程;

2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為N;過點(diǎn)Mx軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;

3)已知是過點(diǎn)A的兩條互相垂直的直線,直線與圓相交于兩點(diǎn),直線與橢圓C交于另一點(diǎn)R;求面積取最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右支上的一點(diǎn)P作一直線l與兩漸近線交于AB兩點(diǎn),其中P的中點(diǎn);

1)求雙曲線的漸近線方程;

2)當(dāng)P坐標(biāo)為時(shí),求直線l的方程;

3)求證:是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)無窮數(shù)列分別滿足,,

其中,設(shè)數(shù)列的前項(xiàng)和分別為,

1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足:存在唯一的正整數(shù)),使得,稱數(shù)列墜點(diǎn)數(shù)列

若數(shù)列“5墜點(diǎn)數(shù)列,求;

若數(shù)列墜點(diǎn)數(shù)列,數(shù)列墜點(diǎn)數(shù)列,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列項(xiàng)和為

(1)若首項(xiàng),且對(duì)于任意的正整數(shù)均有,(其中為正實(shí)常數(shù)),試求出數(shù)列的通項(xiàng)公式.

(2)若數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,為給定的正實(shí)數(shù),滿足:①,且②對(duì)任意的正整數(shù),均有;試求函數(shù)的最大值(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,若橢圓的左、右焦點(diǎn)分別為,,橢圓上一動(dòng)點(diǎn),組成的面積最大為.

1)求橢圓的方程;

2)若存在直線和橢圓相交于不同的兩點(diǎn),,且原點(diǎn),連線的斜率之和滿足:.求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若時(shí),直線是曲線的一條切線,求b的值;

2)若,且上恒成立,求a的取值范圍;

3)令,且在區(qū)間上有零點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊答案