【題目】某學校研究性學習小組對該校高二學生視力情況進行調(diào)查,學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在150名和9511000名的學生進行了調(diào)查,得到如下數(shù)據(jù):

年級名次

是否近視

150

9511000

近視

41

32

不近視

9

18

1)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關(guān)系?

2)在(1)中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調(diào)查他們良好的護眼習慣,并且在這9人中任取3人,記名次在150名的學生人數(shù)為,求的分布列和數(shù)學期望.

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

附:

【答案】1)在犯錯誤的概率不超過0.05的前提下認為視力與學習成績有關(guān)系(2)見解析,數(shù)學期望1

【解析】

1)題設(shè)數(shù)據(jù)代入即得解.

2服從超幾何分布,利用概率公式可得解.

解:(1

因此在犯錯誤的概率不超過0.05的前提下認為視力與學習成績有關(guān)系

2)根據(jù)題意9人中年級名次在名和名分別有3人和6.

可取0,1,2,3

的分布列為

的數(shù)學期望

練習冊系列答案

0

1

2

3

年級 高中課程 年級 初中課程
高一 高一免費課程推薦! 初一 初一免費課程推薦!
高二 高二免費課程推薦! 初二 初二免費課程推薦!
高三 高三免費課程推薦! 初三 初三免費課程推薦!
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若,設(shè)是函數(shù)的零點.

i)證明:時存在唯一

ii)若,記,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃河被稱為我國的母親河,它的得名據(jù)說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開始沿岸設(shè)有若干個觀測點,兩股河水在流經(jīng)相鄰的觀測點的過程中,其混合效果相當于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經(jīng)過第二個觀測點時,兩股河水的含沙量;

2)從第幾個觀測點開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高三理科班共有名同學參加某次考試,從中隨機挑出名同學,他們的數(shù)學成績與物理成績如下表:

數(shù)學成績

物理成績

1)數(shù)據(jù)表明之間有較強的線性關(guān)系,求的線性回歸方程;

2)本次考試中,規(guī)定數(shù)學成績達到分為優(yōu)秀,物理成績達到分為優(yōu)秀.若該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有人,請寫出列聯(lián)表,判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):,;,;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校實行自主招生,參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.

1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列及數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場為迎接新年的到來,在自動扶梯C點的上方懸掛豎直高度為5米的廣告牌DE.如圖所示,廣告牌底部點E正好為DC的中點,電梯AC的坡度.某人在扶梯上點P(異于點C)觀察廣告牌的視角.當人在A點時,觀測到視角∠DAE的正切值為

1)求扶梯AC的長

2)當某人在扶梯上觀察廣告牌的視角θ最大時,求CP的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,E,F分別為AB,A1C的中點,且AA1AD

1)求直線EF與平面ABCD所成角的大;

2)若EFAB,求二面角BA1CD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線m2xy30與直線nx+y30的交點為P,若直線l過點P,且點A1,3)和B3,2)到l的距離相等,求l的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案