已知F1、F2分別是雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn)且,則雙曲線離心率的取值范圍是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)
C

試題分析:由定義知:|PF1|-|PF2|=2a,所以|PF1|=2a+|PF2|,+4a+|PF2| ≥8a,當(dāng)且僅當(dāng)=|PF2|,即|PF2|=2a時(shí)取得等號(hào),設(shè)P(x0,y0) (x0a),由焦半徑公式得:|PF2|=-ex0-a=2a,,又雙曲線的離心率e>1,∴e∈(1,3],故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點(diǎn)且過(guò)點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為,求以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足||,|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿足||·||=,則稱點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問(wèn):對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,曲線上任意一點(diǎn)分別與點(diǎn)、連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線軸、軸分別交于、兩點(diǎn),若曲線與直線沒(méi)有公共點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知O為坐標(biāo)原點(diǎn),P是曲線上到直線距離最小的點(diǎn),且直線OP是雙曲線 的一條漸近線。則的公共點(diǎn)個(gè)數(shù)是(  )
A.2B.1
C.0D.不能確定,與、的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等邊中,若以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則該橢圓的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線和⊙O∶相離,則過(guò)點(diǎn)的直線與橢圓的交點(diǎn)個(gè)數(shù)為(    )
A.至多一個(gè)B. 2個(gè)C. 1個(gè)   D.0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案