【題目】已知函數(shù)f(x)=2|x+1|+ax(x∈R).
(1)證明:當(dāng) a>2時(shí),f(x)在 R上是增函數(shù);
(2)若函數(shù)f(x)存在兩個(gè)零點(diǎn),求a的取值范圍.
【答案】
(1)證明:由函數(shù)f(x)=2|x+1|+ax(x∈R),
得 ,
當(dāng)a>2時(shí),則a+2>0,a﹣2>0,
上述函數(shù)在每一段上都是增函數(shù),
且它們?cè)趚=﹣1處的函數(shù)值相同,
∴當(dāng) a>2時(shí),f(x)在 R上是增函數(shù)
(2)解:根據(jù)(1),若函數(shù)存在兩個(gè)零點(diǎn)
則滿(mǎn)足 ,
解得0<a<2,
∴函數(shù)f(x)存在兩個(gè)零點(diǎn),a的取值范圍為(0,2)
【解析】(1)首先,去掉絕對(duì)值,然后,將函數(shù) f(x)寫(xiě)成分段函數(shù)的形式,針對(duì)x的取值情況,進(jìn)行每一段上判斷函數(shù)為增函數(shù)即可;(2)則根據(jù)(1),當(dāng)x≥﹣1,a+2>0,當(dāng)x<﹣1,a﹣2<0,f(﹣1)=﹣a<0,求解a 的取值范圍即可.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)單調(diào)性的判斷方法和函數(shù)的零點(diǎn)與方程根的關(guān)系,需要了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y= +lg(﹣x2+4x﹣3)的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=a2x+2+34x(a<﹣3)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C是橢圓M: =1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為 ,BC過(guò)橢圓M的中心,且 .
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(0,t)的直線(xiàn)l(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且 ,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0對(duì)一切x∈R恒成立,則實(shí)數(shù)a取值的集合( )
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要使g(x)=3x+1+t的圖象不經(jīng)過(guò)第二象限,則t的取值范圍為( )
A.t≤﹣1
B.t<﹣1
C.t≤﹣3
D.t≥﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)如圖,曲線(xiàn)由上半橢圓和部分拋物線(xiàn) 連接而成, 的公共點(diǎn)為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與分別交于(均異于點(diǎn)),若,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國(guó)剩余定理”又稱(chēng)“孫子定理”.1852年英國(guó)來(lái)華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱(chēng)之為“中國(guó)剩余定理”. “中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為( )
A.2
B.﹣2
C.﹣4
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出場(chǎng)單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)x件,服裝的實(shí)際出廠單價(jià)為p元,寫(xiě)出函數(shù)p=f(x)的表達(dá)式;
(2)當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com