【題目】已知函數(shù)f(x)對(duì)任意x,yR,總有f(x)f(y)f(xy),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.

(1)求證:f(x)R上的單調(diào)減函數(shù).

(2)f(x)[3,3]上的最小值.

【答案】1)詳見解析(2)-2

【解析】

1)本題中,需要證明的是函數(shù)的增減性,則需要回歸定義,從定義出發(fā),根據(jù)增減性采用合適的拼湊法來進(jìn)行證明

(2)抽象函數(shù)函數(shù)值的求法需要通過合理賦值求得,需要考慮函數(shù)的增減性。

(1)證明:設(shè)x1x2是任意的兩個(gè)實(shí)數(shù),且x1<x2,

x2x1>0,因?yàn)?/span>x>0時(shí),f(x)<0,

所以f(x2x1)<0,

又因?yàn)?/span>x2(x2x1)x1

所以f(x2)f[(x2x1)x1]

f(x2x1)f(x1),

所以f(x2)f(x1)f(x2x1)<0,

所以f(x2)<f(x1)

所以f(x)R上的單調(diào)減函數(shù).

(2)(1)可知f(x)R上是減函數(shù),

所以f(x)[3,3]上也是減函數(shù),

所以f(x)[3,3]上的最小值為f(3)

f(3)f(1)f(2)3f(1)=-2.

所以函數(shù)f(x)[3,3]上的最小值是-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級(jí)

A

B

C

D

規(guī)定:A,B,C三級(jí)為合格等級(jí),D為不合格等級(jí)為了解該校高三年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì).

按照,,,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的xy的值,并估計(jì)該校高一年級(jí)學(xué)生成績是合格等級(jí)的概率;

根據(jù)頻率分布直方圖,求成績的中位數(shù)精確到

在選取的樣本中,從AD兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計(jì)如下表:

學(xué)生

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統(tǒng)計(jì)數(shù)據(jù)看,甲、乙兩個(gè)班哪個(gè)班成績更穩(wěn)定用數(shù)字特征說明;

(2)在本次訓(xùn)練中,從兩班中分別任選一個(gè)同學(xué),比較兩人的投中次數(shù),求甲班同學(xué)投中次數(shù)高于乙班同學(xué)投中次數(shù)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)的面積之和記為

,求的值;

若對(duì)任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2009四川卷文)設(shè)矩形的長為,寬為,其比滿足,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計(jì)中。下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長度的比值樣本:

甲批次:0.598 0.625 0.628 0.595 0.639

乙批次:0.618 0.613 0.592 0.622 0.620

根據(jù)上述兩個(gè)樣本來估計(jì)兩個(gè)批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是

A. 甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

B. 乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近

C. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同

D. 兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點(diǎn),求證: 平面;

(Ⅱ)若, ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,DAE的中點(diǎn),C是線段BE上的一點(diǎn),且,,將沿AB折起使得二面角是直二面角.

(l)求證:CD平面PAB;

(2)求直線PE與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是( )

A. 在數(shù)列|中,由此歸納出的通項(xiàng)公式

B. 由平面三角形的性質(zhì),推測(cè)空間四面體性質(zhì)

C. 某校高二共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班都超過50人

D. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

查看答案和解析>>

同步練習(xí)冊(cè)答案