【題目】圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,的中點(diǎn).

)求證:;

)若四邊形是正方形,且,求直線與平面所成角的正弦值.

【答案】(I證明見(jiàn)解析;(II.

【解析】

試題分析:(I連結(jié),設(shè)相交于點(diǎn),連接,則中點(diǎn),根據(jù)中位線有,所以II設(shè)的中點(diǎn)為,的中點(diǎn)為,以為原點(diǎn),所在的直線為軸,所在的直線為軸,所在的直線為軸,建立空間直角坐標(biāo)系.利用直線的方向向量和平面的法向量,計(jì)算線面角的正弦值.

試題解析:

證法1:連結(jié),設(shè)相交于點(diǎn),連接,則中點(diǎn),

的中點(diǎn),

.

【證法2:取中點(diǎn),連接,

平行且等于四邊形為平行四邊行

,

同理可得

.

,

法一:設(shè)的中點(diǎn)為,的中點(diǎn)為,以為原點(diǎn),所在的直線為軸,所在的直線為軸,所在的直線為軸,建立空間直角坐標(biāo)系.

.

,

平面的一個(gè)法向量,

.

所以直線與平面所成角的正弦值為.

【法二:取的中點(diǎn),連結(jié),則

,故,

,

延長(zhǎng)相交于點(diǎn),連結(jié),

為直線與平面所成的角.

因?yàn)?/span>的中點(diǎn),故,又

即直線與平面所成的角的正弦值為.

【法三:取的中點(diǎn),連結(jié),則

,故,

,

中點(diǎn),連結(jié),過(guò)點(diǎn)作,則,

連結(jié),,

為直線與平面所成的角,

即直線與平面所成的角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,為棱上一點(diǎn),,為線段上一點(diǎn),.

)證明:平面;

)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn)、,⊙C的方程為.當(dāng)⊙C的半徑取最小值時(shí):

(1)求出此時(shí)m的值,并寫(xiě)出⊙C的標(biāo)準(zhǔn)方程;

(2)在x軸上是否存在異于點(diǎn)E的另外一個(gè)點(diǎn)F,使得對(duì)于⊙C上任意一點(diǎn)P,總有為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明你的理由;

(3)在第(2)問(wèn)的條件下,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,則下列說(shuō)法不正確的是(

A.若點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積不變

B.若點(diǎn)是平面上到點(diǎn)距離相等的點(diǎn),則點(diǎn)的軌跡是過(guò)點(diǎn)的直線

C.若點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與平面所成角的大小不變

D.若點(diǎn)在直線上運(yùn)動(dòng)時(shí),二面角的大小不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)討論函數(shù)的單調(diào)性;

)若對(duì)于任意的,若函數(shù)在區(qū)間上有最值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售某種品牌的空調(diào)器,每周周初購(gòu)進(jìn)一定數(shù)量的空調(diào)器,商場(chǎng)沒(méi)銷(xiāo)售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤(rùn)200元.

)若該商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(rùn)(單位:元)關(guān)于當(dāng)周需求量(單位:臺(tái),)的函數(shù)解析式;

)該商場(chǎng)記錄了去年夏天(共10周)空調(diào)器需求量(單位:臺(tái)),整理得下表:

10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場(chǎng)周初購(gòu)進(jìn)20臺(tái)空調(diào)器,表示當(dāng)周的利潤(rùn)(單位:元),求的分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿(mǎn)足:對(duì)任意,,都有成立,時(shí),

(1)求的值,并證明當(dāng)時(shí),

(2)判斷的單調(diào)性并加以證明

(3)若函數(shù)上遞減,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線經(jīng)過(guò)點(diǎn)A (1,0).

(1)若直線與圓C相切,求直線的方程;

(2)若直線與圓C相交于P,Q兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)), ,

1)求曲線處的切線方程;

2)討論函數(shù)的極小值;

3)若對(duì)任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案