【題目】已知函數(shù)f (x)=x2aln x-1,函數(shù)F(x)=.

(1)如果函數(shù)f (x)的圖象上的每一點處的切線斜率都是正數(shù),求實數(shù)a的取值范圍;

(2)當a=2時,你認為函數(shù)y的圖象與yF(x)的圖象有多少個公共點?請證明你的結論.

【答案】(1)(,0](2)沒有公共點

【解析】試題分析:(1)由函數(shù)f (x)的圖象上的每一點處的切線斜率都是正數(shù),得到f ′(x)=2x>0,即a<2x2在(0,+∞)上恒成立,轉為最值問題;

(2)原問題等價于的解的個數(shù),即x2-2ln xx+2-2=0的解的個數(shù),構造新函數(shù),研究函數(shù)的最值即可.

試題解析:

(1)∵f (x)=x2aln x-1的定義域為(0,+∞),函數(shù)f (x)的圖象上的每一點處的切線斜率都是正數(shù),

f ′(x)=2x>0在(0,+∞)上恒成立.

a<2x2在(0,+∞)上恒成立,

y=2x2>0在(0,+∞)上恒成立,∴a≤0.

∴所求的a的取值范圍為(-∞,0].

(2)當a=2時,函數(shù)y的圖象與yF(x)的圖象沒有公共點.證明如下:

a=2時,y,它的定義域為

{x|x>0且x≠1},F(x)的定義域為[0,+∞).

x>0且x≠1時,由F(x)得x2-2ln xx+2-2=0.

h(x)=x2-2ln xx+2-2,

h′(x)=2x-1+

.

∴當0<x<1時,h′(x)<0,此時,h(x)單調(diào)遞減;

x>1時,h′(x)>0,此時,h(x)單調(diào)遞增.

∴當x>0且x≠1時,h(x)>h(1)=0,

h(x)=0無實數(shù)根.

∴當a=2,x>0且x≠1時, F(x)無實數(shù)根.

∴當a=2時,函數(shù)y的圖象與yF(x)的圖象沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),曲線在點處的切線與直線垂直,導函數(shù)的最小值為-12.

(1)求函數(shù)的解析式;

(2)用列表法求函數(shù)上的單調(diào)增區(qū)間、極值、最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是雙曲線的左頂點、右焦點,過的直線的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=的定義域為集合Agx=的定義域為集合B,C=xR|x<ax>a+1

1)求集合A,(CAB

2)若AC=R,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線yx有三個不同的公共點,則實數(shù)a的取值集合為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線axby=1與圓x2y2=1相交于A,B兩點(其中a,b是實數(shù)),且AOB是直角三角形(O是坐標原點),則點P(a,b)與點(0,1)之間距離的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線:,已知過點的直線的參數(shù)方程為: (為參數(shù)),直線與曲線分別交于兩點.

(1)寫出曲線和直線的普通方程;

(2)若,,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加某次知識競賽測試的學生中隨機抽出60名學生,將其成績(百分制)(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

2)根據(jù)頻率分布直方圖,從圖中估計總體的眾數(shù)是多少分?中位數(shù)是多少分?

3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述中正確的是( )

A. ,則的充分條件是

B. ,則的充要條件是

C. 命題的否定是

D. 是等比數(shù)列,則為單調(diào)遞減數(shù)列的充分條件

查看答案和解析>>

同步練習冊答案