【題目】已知函數(shù),下列結(jié)論中不正確的是( )

A. 的圖象關(guān)于點中心對稱

B. 的圖象關(guān)于直線對稱

C. 的最大值為

D. 既是奇函數(shù),又是周期函數(shù)

【答案】C

【解析】試題分析:對于A中,因為,

,所以,可得的圖象關(guān)于中心對稱,故A正確;對于B,因為

,,所以,可得的圖象關(guān)于中心對稱,故B正確;對于C,化簡得

,令,因為的導(dǎo)數(shù)

,所以當(dāng)時,,函數(shù)為減函數(shù);當(dāng)時,,函數(shù)為增函數(shù),因此函數(shù)的最大值為時的函數(shù)值,結(jié)合,可得的最大值為,由此可得的最大值為,而不是,所以不正確;對于D,因為,所以是奇函數(shù),因為,所以為函數(shù)的一個周期,得為周期,可得既是奇函數(shù),又是周期函數(shù),所以正確,故選D.

【方法點晴】本題主要考查了三角函數(shù)的圖象與性質(zhì)及三角函數(shù)的最值問題,其中解答中涉及到三角函數(shù)的解析式、三角函數(shù)的奇偶性、三角函數(shù)的單調(diào)性和周期性等知識點的綜合考查,著重考查了三角恒等變換公式、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的圖象的對稱性等知識,體現(xiàn)了分析問題和解答問題的能力,屬于中檔試題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3x2﹣9x+m
(1)求函數(shù)f(x)=x3+3x2﹣9x+m的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最大值12,求函數(shù)f(x)在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E為BC的中點.
(1)證明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1=
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)中,以為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為: ,曲線的極坐標(biāo)方程:

1)寫出的普通方程;

2)若交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時,求曲線上的點到直線的距離的最大值;

(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應(yīng)限制在50~100km/h,假設(shè)汽油的價格是6元/升,以xkm/h速度行駛時,汽車的耗油率為 ,司機每小時的工資是36元,那么最經(jīng)濟的車速是多少?如果不考慮其他費用,這次行車的總費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),恒有成立,且,對任意的,則成立的充要條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元二次不等式﹣x2+x+2>0的解集是(
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}

查看答案和解析>>

同步練習(xí)冊答案