【題目】已知為坐標原點,,.

求函數(shù)的最小正周期和單調遞增區(qū)間;

將函數(shù)的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

【答案】(1);(2)2

【解析】

(1)由題意得到,進而可得函數(shù)的周期和單調增區(qū)間;(2)根據(jù)圖象變換得到,根據(jù)的范圍得到的取值范圍,然后可得的最小值

(1)由題意,,

所以,

所以函數(shù)的最小正周期為

,

,

所以的單調遞增區(qū)間為.

(2)由(1)得,

將函數(shù)的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),得到的圖象對應的函數(shù)為;再將得到的圖象向左平移個單位,得到的圖象對應的函數(shù)為

,

,

,

∴當,即時,有最小值,且,

∴函數(shù)上的最小值為2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行了一次初一學生調研考試,為了解本次考試學生的數(shù)學學科成績情況,從中抽取部分學生的分數(shù)(滿分為100分,得分取正整數(shù),抽取學生的分數(shù)均在之內)作為樣本(樣本容量)進行統(tǒng)計,按照的分組方法作出頻率分布直方圖,并作出了樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù)].

(Ⅰ)求頻率分布直方圖中的的值,并估計學生分數(shù)的中位數(shù);

(Ⅱ)字在選取的樣本中,從成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中恰有一人得分在內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是以為直徑的圓上一段圓弧,是以為直徑的圓上一段圓弧,是以為直徑的圓上一段圓弧,三段弧構成曲線.則下面說法正確的是( )

A.曲線軸圍成的面積等于

B.的公切線方程為:

C.所在圓與所在圓的交點弦方程為:

D.用直線所在的圓,所得的弦長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下對各事件發(fā)生的概率判斷正確的是(

A.甲、乙兩人玩剪刀、石頭、布的游戲,則玩一局甲不輸?shù)母怕适?/span>

B.1名男同學和2名女同學中任選2人參加社區(qū)服務,則選中一男一女同學的概率為

C.將一個質地均勻的正方體骰子(每個面上分別寫有數(shù)字1,23,45,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的概率是

D.從三件正品、一件次品中隨機取出兩件,則取出的產品全是正品的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線與圓O:相切.

(1)直線l過點(2,1)且截圓O所得的弦長為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點,P是圓上異于A,B的任意一點,且直線AP,BPy軸相交于M,N點.判斷點M、N的縱坐標之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:

超過1小時

不超過1小時

20

8

12

m

(Ⅰ)求;

(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?

(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓O 的右焦點為F,點B,C分別是橢圓O的上、下頂點,點P是直線ly=-2上的一個動點(y軸交點除外),直線PC交橢圓于另一點M.

(1)當直線PM過橢圓的右焦點F時,求FBM的面積;

(2)記直線BM,BP的斜率分別為k1k2,求證:k1·k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論:

①若,則“”成立的一個充分不必要條件是“,且”;

②存在,使得;

③若函數(shù)的導函數(shù)是奇函數(shù),則實數(shù);

④平面上的動點到定點的距離比軸的距離大1的點的軌跡方程為.

其中正確結論的序號為_________.(填寫所有正確的結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90100),[100,110),,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分數(shù)在[120130)內的頻率;

2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100,110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;

3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內的概率.

查看答案和解析>>

同步練習冊答案