【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長交的延長線與點Q,連接QE交PA于點K,設QA=x,
由,得,則,所以.
取的中點為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結束】
17
【題目】在極坐標系中,極點為,已知曲線: 與曲線: 交于不同的兩點, .
(1)求的值;
(2)求過點且與直線平行的直線的極坐標方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且 是1與an的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設Tn為數(shù)列{ }的前n項和,證明: ≤Tn<1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過其右焦點F且與x軸垂直的直線交橢圓C于P,Q兩點,橢圓C的右頂點為R,且滿足.
(1)求橢圓C的方程;
(2)若斜率為k(其中)的直線l過點F,且與橢圓交于點A,B,弦AB的中點為M,直線OM與橢圓交于點C,D,求四邊形ACBD面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x﹣2,g(x)=2x﹣5,則不等式|f(x)|+|g(x)|≤2的解集為;|f(2x)|+|g(x)|的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先把函數(shù)y=sin(x+φ)的圖象上個點的橫坐標縮短為原來的 (縱坐標不變),再向右平移 個單位,所得函數(shù)關于y軸對稱,則φ的值可以是( )
A.
B.
C.-
D.-
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,⊥底面,,,,,點為棱的中點.
(1)(理科生做)證明:;
(文科生做)證明:;
(2)(理科生做)若為棱上一點,滿足,求二面角的余弦值.
(文科生做)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知關于的不等式,其中.
(1)當變化時,試求不等式的解集;
(2)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com