【題目】如圖,已知四棱錐的底面為棱形,且面,,,,且,分別為,的中點.
(1)求證:面;
(2)求二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是甲、乙、丙三個企業(yè)的產(chǎn)品成本(單位:萬元)及其構成比例,則下列判斷正確的是( 。
A. 乙企業(yè)支付的工資所占成本的比重在三個企業(yè)中最大
B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費用開支所占成本的比重也最大
C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費用支出降到了最低點
D. 乙企業(yè)用于工資和其他費用支出額比甲丙都高
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有兩種理財產(chǎn)品和,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結果之間相互獨立):
產(chǎn)品:
投資結果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
產(chǎn)品:
投資結果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
注:
(1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;
(2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD.
(Ⅰ)求證:CB⊥PD;
(Ⅱ)求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】科研人員在對人體脂肪含量和年齡之間關系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:
根據(jù)上表的數(shù)據(jù)得到如下的散點圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:
(i)求;
(ii)計算樣本相關系數(shù)(精確到0.01),并刻畫它們的相關程度.
(2)若y關于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量。
附:參考數(shù)據(jù):
參考公式:相關系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年東京夏季奧運會將設置米男女混合泳接力這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出2男2女共計4名運動員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運動員完成,且每名運動員都要出場,若中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔仰泳或者自由泳,男運動員乙只能承擔蝶泳或者自由泳,剩下的2名運動員四種泳姿都可以承擔,則中國隊的排兵布陣的方式共有( )
A. 144種B. 24種C. 12種D. 6種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的參數(shù)方程;
(2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com