【題目】已知在四面體中,,,,則四面體外接球的表面積為__________.
【答案】
【解析】由題意可采用割補(bǔ)法,考慮到四面體的四個(gè)面為全等的三角形,所以可在其每個(gè)面補(bǔ)上一個(gè)以,,為三邊的三角形作為底面,分別以x,y,z為側(cè)棱長(zhǎng)且兩兩垂直的三棱錐,從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,并且設(shè)球半徑為,則有所以球的表面積為.
點(diǎn)睛: (1)補(bǔ)形法的應(yīng)用思路:“補(bǔ)形法”是立體幾何中一種常見(jiàn)的重要方法,在解題時(shí),把幾何體通過(guò)“補(bǔ)形”補(bǔ)成一個(gè)完整的幾何體或置于一個(gè)更熟悉的幾何體中,巧妙地破解空間幾何體的體積等問(wèn)題,常見(jiàn)的補(bǔ)形法有對(duì)稱(chēng)補(bǔ)形、聯(lián)系補(bǔ)形與還原補(bǔ)形,對(duì)于還原補(bǔ)形,主要涉及臺(tái)體中“還臺(tái)為錐”.
(2)補(bǔ)形法的應(yīng)用條件:當(dāng)某些空間幾何體是某一個(gè)幾何體的一部分,且求解的問(wèn)題直接求解較難入手時(shí),常用該法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年6月22 日,“國(guó)際教育信息化大會(huì)”在山東青島開(kāi)幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)“青少年”與“中老年”的人數(shù)之比為9: 11.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問(wèn)卷調(diào)查.在這9人中再選取3人進(jìn)行面對(duì)面詢(xún)問(wèn),記選取的3人中關(guān)注“國(guó)際教育信息化大會(huì)”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:參考公式,其中.
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點(diǎn),起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(2x)=x2﹣2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[ ,8]上的最小值為﹣1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個(gè)動(dòng)點(diǎn),∠CPB=α,∠DPA=β. (Ⅰ)當(dāng) 最小時(shí),求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時(shí),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=xsinx,x1、x2∈[﹣ , ],且f(x1)>f(x2),則下列結(jié)論必成立的是( )
A.x1>x2
B.x1+x2>0
C.x1<x2
D.x12>x22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與的圖象關(guān)于軸對(duì)稱(chēng),當(dāng)函數(shù)和在區(qū)間同時(shí)遞增或同時(shí)遞減時(shí),把區(qū)間叫做函數(shù)的“不動(dòng)區(qū)間”.若區(qū)間為函數(shù)的“不動(dòng)區(qū)間”,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),當(dāng)時(shí), (),且曲線(xiàn)在處的切線(xiàn)與直線(xiàn)平行.
(1)求的值及函數(shù)的解析式;
(2)若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com