【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣ ,0),B( ,0),銳角α的終邊與單位圓O交于點(diǎn)P.
(Ⅰ)用α的三角函數(shù)表示點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng) =﹣ 時(shí),求α的值;
(Ⅲ)在x軸上是否存在定點(diǎn)M,使得| |= | |恒成立?若存在,求出點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】解:銳角α的終邊與單位圓O交于點(diǎn)P.

(Ⅰ)用α的三角函數(shù)表示點(diǎn)P的坐標(biāo)為(cosα,sinα);

(Ⅱ) , =﹣ 時(shí),

即(cos )(cos )+sin2α= ,整理得到cos ,所以銳角α=60°;

(Ⅲ)在x軸上假設(shè)存在定點(diǎn)M,設(shè)M(x,0), ,

則由| |= | |恒成立,得到 = ,整理得2cosα(2+x)=x2﹣4,

所以存在x=﹣2時(shí)等式恒成立,所以存在M(﹣2,0).


【解析】(Ⅰ)用α的三角函數(shù)的坐標(biāo)法定義得到P 坐標(biāo);(Ⅱ)首先寫成兩個(gè)向量的坐標(biāo)根據(jù) =﹣ ,得到關(guān)于α的三角函數(shù)等式,求α的值;(Ⅲ)假設(shè)存在M(x,0),進(jìn)行向量的模長(zhǎng)運(yùn)算,得到三角等式,求得成立的x值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來(lái)曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 =(3 sinx, cosx), =(cosx, cosx),f (x)=
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)x∈[﹣ , ]時(shí),g(x)=f(x)+m的最大值為 ,求g(x)的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x
(1)當(dāng)a= 時(shí),滿足不等式f(x)>1的x的取值范圍為
(2)若函數(shù)f(x)的圖象與x軸沒(méi)有交點(diǎn),則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定個(gè)人稿費(fèi)納稅方法為:不超過(guò)800元的不納稅,超過(guò)800且不超過(guò)4000元的按超過(guò)800元的部分14%納稅,超過(guò)4000元的按全部稿費(fèi)的11%納稅,
(1)試根據(jù)上述規(guī)定建立某人所得稿費(fèi)x元與納稅額y元的函數(shù)關(guān)系;
(2)某人出了一本書,獲得20000元的個(gè)人稿費(fèi),則這個(gè)人需要納稅是多少元?
(3)某人發(fā)表一篇文章共納稅70元,則這個(gè)人的稿費(fèi)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是( )
A.y=x與
B.y=x與
C.y=2lgx與y=lgx2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(diǎn)(0,1)且被x軸分成的兩段圓弧長(zhǎng)之比為1:2,過(guò)點(diǎn)H(0,t)的直線l于圓C相交于M、N兩點(diǎn),且以MN為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.

(1)求圓C的方程;
(2)當(dāng)t=1時(shí),求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案