【題目】已知a,b為正數(shù),直線y=x﹣2a+1與曲線y=ex+b﹣1相切,則的最小值為( 。

A. 9 B. 7 C. D.

【答案】D

【解析】

設切點為(m,n),由y=ex+b﹣1的導數(shù)y′=ex+b,可得切線的斜率為em+b=1,n=m﹣2a+1=em+b﹣1,化為2a+b=1,根據(jù)均值不等式可得到最值.

a,b為正數(shù),直線y=x﹣2a+1與曲線y=ex+b﹣1相切,

設切點為(m,n),由y=ex+b﹣1的導數(shù)y′=ex+b

可得切線的斜率為em+b=1,n=m﹣2a+1=em+b﹣1,

化為2a+b=1,

=(2a+b)()=3++≥3+2=3+2

當且僅當b=a時,上式取得等號,

可得的最小值為3+2

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足,且

(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求 ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導數(shù),得到關于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導數(shù)研究其單調性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故 .

(2)由(1)可知, ,

,可得,

,

,

時, 單調遞減,且

時, , 單調遞增;且

所以上當單調遞減,在上單調遞增,且,

,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質的合理運用.

型】解答
束】
22

【題目】在平面直角坐標系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

①函數(shù)與函數(shù)表示同一個函數(shù);

②奇函數(shù)的圖象一定通過直角坐標系的原點;

③函數(shù)的圖象可由的圖象向右平移1個單位得到;

④若函數(shù)的定義域為,則函數(shù)的定義域為

⑤設函數(shù)是在區(qū)間上圖象連續(xù)的函數(shù),且,則方程在區(qū)間上至少有一實根.

其中正確命題的序號是________.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,E,F,G分別為,,AB的中點.

求證:平面平面BEF;

若平面,求證:HBC的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017101日起施行.作為民法典的開篇之作,《民法總則》與每個人的一生息息相關.某地區(qū)為了調研本地區(qū)人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區(qū)間上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:

年齡

頻數(shù)

5

5

10

15

5

10

了解《民法總則》

1

2

8

12

4

5

1)填寫下面列聯(lián)表,并判斷是否有的把握認為以45歲為分界點對了解《民法總則》政策有差異;

年齡低于45歲的人數(shù)

年齡不低于45歲的人數(shù)

合計

了解

不了解

合計

2)若對年齡在的被調研人中各隨機選取2人進行深入調研,記選中的4人中不了解《民法總則》的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

參考公式和數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位計劃在一水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量年入流量:一年內上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.

(1)求未來3年中,設表示流量超過120的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系

年入流量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是(

A.已知隨機變量,若.

B.已知分類變量的隨機變量的觀察值為,則當的值越大時,有關的可信度越小.

C.在線性回歸模型中,計算其相關指數(shù),則可以理解為:解析變量對預報變量的貢獻率約為

D.若對于變量組統(tǒng)計數(shù)據(jù)的線性回歸模型中,相關指數(shù).又知殘差平方和為.那么.(注意:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四個小球,分別寫有五、校、聯(lián)、考四個字,從中任取一個小球,有放回抽取,直到取到”“二字就停止,用隨機模擬的方法估計恰好在第三次停止的概率:利用電腦隨機產生03之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表五、校、聯(lián)、考這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經隨機模擬產生了以下16組隨機數(shù),由此可以估計,恰好第三次就停止的概率為______

232 321 230 023 123 021 132 220

231 130 133 231 331 320 120 233

查看答案和解析>>

同步練習冊答案