【題目】如圖,四邊形是菱形, 平面 , , ,點(diǎn)的中點(diǎn).

)求證: 平面

)求證:平面平面

)求三棱錐的體積.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).

【解析】試題分析:()要證線面平行,就要證線線平行,由線面平行的性質(zhì)定理知平行線是過(guò)的平面與平面的交線,由已知取的中點(diǎn),可證平行且相等,從而有;()要證面面垂直,一般先證線面垂直,由()的證明過(guò)程及已知的垂直可知應(yīng)證平面,而且易證(證平面);()由()知

試題解析:

)取中點(diǎn),連接

因?yàn)辄c(diǎn)的中點(diǎn),

所以

,且,

所以

所以四邊形為平行四邊形.

所以

平面平面,

所以平面

)連接

因?yàn)樗倪呅?/span>為菱形, ,所以為等邊三角形.

因?yàn)?/span>中點(diǎn),所以,

又因?yàn)?/span>平面, 平面,所以,

, 平面,

所以平面

所以平面,

平面,所以平面平面

法二:因?yàn)樗倪呅?/span>為菱形, ,所以為等邊三角形.

因?yàn)?/span>中點(diǎn),所以,

又因?yàn)?/span>平面, 平面

所以平面平面

又平面, 平面

所以平面

所以平面,

平面,所以平面平面

)因?yàn)?/span>,

, 所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出所有滿足的值;若不是,請(qǐng)說(shuō)明事由.

2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.

(1)求證:O、B、D、E四點(diǎn)共圓;
(2)求證:2DE2=DMAC+DMAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線過(guò)焦點(diǎn)交拋物線于兩點(diǎn), ,點(diǎn)的縱坐標(biāo)為.

(Ⅰ)求拋物線的方程;

(Ⅱ)若點(diǎn)是拋物線位于曲線 (為坐標(biāo)原點(diǎn))上一點(diǎn),求的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)滿足f(2+x)=f(2﹣x),其圖象開(kāi)口向上,頂點(diǎn)為A,與x軸交于點(diǎn)B(﹣1,0)和C點(diǎn),且△ABC的面積為18.

(1)求此二次函數(shù)的解析式;

(2)若方程f(x)=m(x﹣1)在區(qū)間[0,1]有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓,點(diǎn)在圓上運(yùn)動(dòng).

)如果是等腰三角形,求點(diǎn)的坐標(biāo)

)如果直線與圓的另一個(gè)交點(diǎn)為,且,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(百分制)如表所示:

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績(jī)

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績(jī)

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績(jī)90分(含90分)以上為優(yōu)秀,物理成績(jī)85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)系(
A.99.5%
B.99.9%
C.97.5%
D.95%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,點(diǎn)E、F分別是AB、CD的中點(diǎn),點(diǎn)G在EF上,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖2.

(1)當(dāng)AG+GC最小時(shí),求證:BD⊥CG;
(2)當(dāng)2VBADGE=VDGBCF時(shí),求二面角D﹣BG﹣C平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱.
(1)當(dāng)x∈(0, )時(shí),求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案