【題目】在中國決勝全面建成小康社會的關(guān)鍵之年,如何更好地保障和改善民生,如何切實(shí)增強(qiáng)政策“獲得感”,成為2019年全國兩會的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊5個民生項目,得到如下信息:
①若該地區(qū)引進(jìn)甲項目,就必須引進(jìn)與之配套的乙項目;
②丁、戊兩個項目與民生密切相關(guān),這兩個項目至少要引進(jìn)一個;
③乙、丙兩個項目之間有沖突,兩個項目只能引進(jìn)一個;
④丙、丁兩個項目關(guān)聯(lián)度較高,要么同時引進(jìn),要么都不引進(jìn);
⑤若引進(jìn)項目戊,甲、丁兩個項目也必須引進(jìn).
則該地區(qū)應(yīng)引進(jìn)的項目為______.
【答案】丙丁
【解析】
依次假設(shè)引進(jìn)的項目為甲、乙、丙,通過所給條件找到滿足所有條件的情況即可得到結(jié)果.
假設(shè)引進(jìn)甲項目,由①知,乙項目需引進(jìn)由③知,丙項目不引進(jìn)由④知,丁項目不引進(jìn)由②知,戊項目需引進(jìn)由⑤知,甲、丁必須引進(jìn),與丁項目不引進(jìn)相矛盾;
假設(shè)不引進(jìn)甲項目,引進(jìn)乙項目由③知,丙項目不引進(jìn)由④知,丁項目不引進(jìn)由②知,戊項目需引進(jìn)由⑤知,甲、丁必須引進(jìn),與假設(shè)矛盾;
假設(shè)不引進(jìn)甲、乙項目,引進(jìn)丙項目,由④知,丁項目需引進(jìn);由②知,戊項目可引進(jìn),也可不引進(jìn),若引進(jìn)戊項目,由⑤知,需引進(jìn)甲項目,與假設(shè)矛盾,則不能引進(jìn)戊項目;所以引進(jìn)的項目為丙和丁.
故答案為:丙丁.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動,平面,且,點(diǎn)、分別是、的中點(diǎn).
(1)求證:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)直線與的交點(diǎn)為,當(dāng)變化時點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若“”為真命題,則“”為真命題
B.命題“”的否定是“”
C.命題“若,則”的逆否命題為真命題
D.“”是“”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)當(dāng)時,若對任意都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當(dāng)時,求過切點(diǎn)為的切線方程;
(2)若在區(qū)間上的最大值為,求a的值;
(3)若不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查一款手機(jī)的使用時間,研究人員對該款手機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:
并對不同年齡層的市民對這款手機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
愿意購買該款手機(jī) | 不愿意購買該款手機(jī) | 總計 | |
40歲以下 | 600 | ||
40歲以上 | 800 | 1000 | |
總計 | 1200 |
(1)根據(jù)圖中的數(shù)據(jù),試估計該款手機(jī)的平均使用時間;
(2)請將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款手機(jī)”與“市民的年齡”有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素數(shù)猜想的一個弱化形式.孿生素數(shù)猜想是希爾伯特在二十世紀(jì)初提出的23個數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).在不超過15的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若對,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com