【題目】在楊輝三角形中,從第2行開始,除1以外,其它每一個(gè)數(shù)值是它上面的兩個(gè)數(shù)值之和,該三角形數(shù)陣開頭幾行如圖所示.
(1)在楊輝三角形中是否存在某一行,使該行中三個(gè)相鄰的數(shù)之比是3∶4∶5?若存在,試求出是第幾行;若不存在,請(qǐng)說(shuō)明理由;
(2)已知n,r為正整數(shù),且n≥r+3.求證:任何四個(gè)相鄰的組合數(shù)C,C,C,C不能構(gòu)成等差數(shù)列.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1) 楊輝三角形的第行由二項(xiàng)式系數(shù)組成.
若第行中有三個(gè)相鄰的數(shù)之比為則
解之即可說(shuō)明存在;
利用組合數(shù)公式可得兩式相減得,所以C,C,C,C成等差數(shù)列,由二項(xiàng)式系數(shù)的性質(zhì)可知C=C<C=C,這與等差數(shù)列的性質(zhì)矛盾,從而要證明的結(jié)論成立
試題解析:(1)解 存在.楊輝三角形的第n行由二項(xiàng)式系數(shù)C,k=0,1,2,…,n組成.
若第n行中有三個(gè)相鄰的數(shù)之比為3∶4∶5,
則,
即3n-7k=-3,4n-9k=5,解得k=27,n=62.
即第62行有三個(gè)相鄰的數(shù)C,C,C的比為3∶4∶5.
(2)證明 若有n,r(n≥r+3),使得C,C,C,C成等差數(shù)列,
則2C=C+C,2C=C+C,
即=+,
=+,
所以=+,
=+,
整理得n2-(4r+5)n+4r(r+2)+2=0,n2-(4r+9)n+4(r+1)(r+3)+2=0.
兩式相減得n=2r+3,
所以C,C,C,C成等差數(shù)列,
由二項(xiàng)式系數(shù)的性質(zhì)可知C=C<C=C,
這與等差數(shù)列的性質(zhì)矛盾,從而要證明的結(jié)論成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時(shí)間情況,在本市的所有中學(xué)生中隨機(jī)抽取了120名學(xué)生進(jìn)行調(diào)查,現(xiàn)將日均自學(xué)時(shí)間小于1小時(shí)的學(xué)生稱為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下列聯(lián)表,已知在調(diào)查對(duì)象中隨機(jī)抽取1人,為“自學(xué)不足”的概率為.
非自學(xué)不足 | 自學(xué)不足 | 合計(jì) | |
配有智能手機(jī) | 30 | ||
沒有智能手機(jī) | 10 | ||
合計(jì) |
請(qǐng)完成上面的列聯(lián)表;
根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“自學(xué)不足”與“配有智能手機(jī)”有關(guān)?
附表及公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}滿足:①a1=1;②所有項(xiàng)an∈N*;③1=a1<a2<…<an<an+1<….設(shè)集合Am={n|an≤m,m∈N*),將集合Am中的元素的最大值記為bm,即bm是數(shù)列{an}中滿足不等式an≤m的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.
例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(I)若數(shù)列{an}的伴隨數(shù)列為1,1,2,2,2,3,3,3,3……,請(qǐng)寫出數(shù)列{an};
(II)設(shè)an=4n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前50項(xiàng)之和;
(III)若數(shù)列{an}的前n項(xiàng)和(其中c為常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項(xiàng)和Tm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊長(zhǎng)都是有理數(shù).
(1)求證:cos A是有理數(shù);
(2)求證:對(duì)任意正整數(shù)n,cos nA是有理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(一)在函數(shù)圖象的學(xué)習(xí)中常常用到化歸轉(zhuǎn)化的思想,往往通過(guò)對(duì)一些已經(jīng)學(xué)習(xí)過(guò)的函數(shù)圖象的研究,進(jìn)一步遷移到其它函數(shù),例如函數(shù)與正弦函數(shù)就有密切的聯(lián)系,因?yàn)?/span>.只需將在軸下方的圖象翻折到上方,就得到的圖象.
(二)在研究函數(shù)零點(diǎn)問題時(shí),往往會(huì)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.例如研究函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來(lái)進(jìn)行處理,通過(guò)作圖不僅知道函數(shù)有且僅有一個(gè)零點(diǎn),還可以確定零點(diǎn).這體現(xiàn)了化歸轉(zhuǎn)化與數(shù)形結(jié)合的思想在函數(shù)研究中的應(yīng)用.
結(jié)合閱讀材料回答下面兩個(gè)問題:
作出函數(shù)的圖象;
利用作圖的方法驗(yàn)證函數(shù)有且僅有兩個(gè)零點(diǎn).若記兩個(gè)零點(diǎn)分別為,,證明:.(注:在同一坐標(biāo)中作圖)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角梯形中, , ,將沿折起至,使二面角為直角.
(1)求證:平面平面;
(2)若點(diǎn)滿足, ,當(dāng)二面角為45°時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱中,是的中點(diǎn),是線段上的動(dòng)點(diǎn),且.
(1)若,求證:;
(2)求二面角的余弦值;
(3)若直線與平面所成角的大小為,求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), , .
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),函數(shù)的圖像上存在點(diǎn)在函數(shù)的圖像的下方,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com