【題目】某同學(xué)同時擲兩顆骰子,得到點數(shù)分別為a,b,則橢圓 =1(a>b>0)的離心率e> 的概率是(
A.
B.
C.
D.

【答案】C
【解析】解:由題意知本題是一個古典概型, ∵試驗發(fā)生包含的事件是同時擲兩顆骰子,得到點數(shù)分別為a,b,共有6×6=36種結(jié)果
滿足條件的事件是e=

a>2b,符合a>2b的情況有:當(dāng)b=1時,有a=3,4,5,6四種情況;
當(dāng)b=2時,有a=5,6兩種情況,
總共有6種情況.
∴概率為 =
故選C
本題是一個古典概型,試驗發(fā)生包含的事件是同時擲兩顆骰子,得到點數(shù)分別為a,b,共有6×6種結(jié)果滿足條件的事件是e> ,得到a>2b,列舉符合a>2b的情況得到滿足條件的事件數(shù),根據(jù)概率公式得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實數(shù)m的取值范圍;
(3)若f(x)≥nx對任意的實數(shù)x≥1成立,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷居民戶是否小康的一個重要指標(biāo)是居民戶的年收入,某市從轄區(qū)內(nèi)隨機抽取100個居民戶,對每個居民戶的年收入與年結(jié)余的情況進行分析,設(shè)第i個居民戶的年收入xi(萬元),年結(jié)余yi(萬元),經(jīng)過數(shù)據(jù)處理的: =400, =100, =900, =2850.
(1)已知家庭的年結(jié)余y對年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(2)若該市的居民戶年結(jié)余不低于5萬,即稱該居民戶已達小康生活,請預(yù)測居民戶達到小康生活的最低年收入應(yīng)為多少萬元? 附:在y=bx+a中,b= ,a= ,其中 為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的一個頂點為A(0,1),離心率為 ,過點B(0,﹣2)及左焦點F1的直線交橢圓于C,D兩點,右焦點設(shè)為F2
(1)求橢圓的方程;
(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2+ax﹣ 在( ,+∞)是增函數(shù),則a的取值范圍(
A.(﹣∞,3]
B.(﹣∞,﹣3]
C.[﹣3,+∞)
D.(﹣3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當(dāng)x= 時,函數(shù)取得最大值4. (Ⅰ)求函數(shù) f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[ , ]時,方程f(x)=m+1有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求點D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)圖象上不同兩點, 處切線的斜率分別是, ,規(guī)定為線段的長度)叫做曲線在點之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點的橫坐標(biāo)分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);

③設(shè)點 是拋物線上不同的兩點,則

④設(shè)曲線是自然對數(shù)的底數(shù))上不同兩點, ,且,若恒成立,則實數(shù)的取值范圍是

其中真命題的序號為__________.(將所有真命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案