設(shè)函數(shù)f(x)=a-
22x+1
,
(1)求證:不論a為何實數(shù)f(x)總為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)若不等式f(x)+a>0恒成立,求實數(shù)a的取值范圍.
分析:(1)用單調(diào)性的定義來證明.
(2) f(x)為奇函數(shù),∴f(-x)=-f(x)對所有x都成立求出a.
(3)f(x)+a>0恒成立轉(zhuǎn)化為2a>
2
2x+1
恒成立,找
2
2x+1
的最大值即可.
解答:解:(1)f(x)的定義域為R,設(shè)x1<x2,
f(x1)-f(x2)=a-
2
2x1+1
-a+
2
2x2+1
=
2•(2x1-2x2)
(1+2x1)(1+2x2)
,
∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不論a為何實數(shù)f(x)總為增函數(shù).

(2)∵f(x)為奇函數(shù),∴f(-x)=-f(x),即a-
2
2-x+1
=-a+
2
2x+1
,
解得:a=1.∴f(x)=1-
2
2x+1
.

(3)∵2x+1>1,∴0<
2
2x+1
<2

f(x)=a-
2
2x+1
,∴f(x)+a>0可化為2a-
2
2x+1
>0,
2a>
2
2x+1
.故要使f(x)+a>0恒成立,只須2a≥2,
即a≥1.
點評:本題是一道難度中檔的綜合題,第三問是函數(shù)方面的恒成立問題,恒成立問題一般有兩種情況,一是f(x)>a恒成立,只須比f(x)的最小值小即可,二是f(x)<a恒成立,只須比f(x)的最大值大即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的圖象經(jīng)過點(
π
4
,2)

(1)求實數(shù)m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
,an=f(n)
,若數(shù)列{an}是單調(diào)遞減數(shù)列,則實數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
2
,-2)
,
b
=(sin(
π
4
+2x),cos2x)
(x∈R).設(shè)函數(shù)f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(5
3
cosx,cosx)
,
b
=(sinx,2cosx)
,其中x∈[
π
6
,
π
2
]
,設(shè)函數(shù)f(x)=
a
b
+|
b
|2+
3
2

(1)求函數(shù)f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步練習(xí)冊答案