【題目】下列說法正確的是( )
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02﹣x0﹣1>0,則¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”
【答案】D
【解析】解:對于A,“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件,顯然不正確,如果函數(shù)的定義域中沒有0,函數(shù)可以是奇函數(shù)例如,y= ,∴A不正確; 對于B,若p:x0∈R,x02﹣x0﹣1>0,則¬p:x∈R,x2﹣x﹣1≤0,∴B不正確;
對于C,若p∧q為假命題,則p,q一假即假命,∴C不正確;
對于D,“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”,滿足否命題的形式,∴D正確;
故選:D.
【考點精析】關于本題考查的命題的真假判斷與應用,需要了解兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】目前我國城市的空氣污染越來越嚴重,空氣質(zhì)量指數(shù)一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現(xiàn)調(diào)查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:
室外工作 | 室內(nèi)工作 | 合計 | |
有呼吸系統(tǒng)疾病 | 150 | ||
無呼吸系統(tǒng)疾病 | 100 | ||
合計 | 200 |
(Ⅰ)請把列聯(lián)表補充完整;
(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;
(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.
參考公式與臨界表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應用.某網(wǎng)絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):
手機品牌 型號 | I | II | III | IV | V |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機品牌 紅包個數(shù) | 優(yōu) | 非優(yōu) | 合計 |
甲品牌(個) | |||
乙品牌(個) | |||
合計 |
(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關?
(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.
①求在型號I被選中的條件下,型號II也被選中的概率;
②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.
(1)求橢圓的方程;
(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 的右焦點為F(2,0),設A、B為雙曲線上關于原點對稱的兩點,AF的中點為M,BF的中點為N,若原點O在以線段MN為直徑的圓上,直線AB的斜率為 ,則雙曲線的離心率為( )
A.4
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,給出下列四個結(jié)論: ①曲線W關于原點對稱;
②曲線W關于直線y=x對稱;
③曲線W與x軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于 ;
④曲線W上的點到原點距離的最小值為2﹣
其中,所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x2f'(1).
(1)求f'(1)和函數(shù)x的極值;
(2)若關于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍;
(3)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com